Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2014_2_a8, author = {D. V. Gritsuk}, title = {Derived $\pi$-length of a $\pi$-solvable group in which the {Sylow} $p$-subgroups are either bicyclic or of order~$p^3$}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {54--58}, publisher = {mathdoc}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2014_2_a8/} }
TY - JOUR AU - D. V. Gritsuk TI - Derived $\pi$-length of a $\pi$-solvable group in which the Sylow $p$-subgroups are either bicyclic or of order~$p^3$ JO - Problemy fiziki, matematiki i tehniki PY - 2014 SP - 54 EP - 58 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2014_2_a8/ LA - ru ID - PFMT_2014_2_a8 ER -
%0 Journal Article %A D. V. Gritsuk %T Derived $\pi$-length of a $\pi$-solvable group in which the Sylow $p$-subgroups are either bicyclic or of order~$p^3$ %J Problemy fiziki, matematiki i tehniki %D 2014 %P 54-58 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2014_2_a8/ %G ru %F PFMT_2014_2_a8
D. V. Gritsuk. Derived $\pi$-length of a $\pi$-solvable group in which the Sylow $p$-subgroups are either bicyclic or of order~$p^3$. Problemy fiziki, matematiki i tehniki, no. 2 (2014), pp. 54-58. http://geodesic.mathdoc.fr/item/PFMT_2014_2_a8/
[1] V. S. Monakhov, Vvedenie v teoriyu konechnykh grupp i ikh klassov, uchebnoe posobie, Vysheishaya shkola, Minsk, 2006, 207 pp.
[2] B. Huppert, Endliche Gruppen, v. I, Berlin–Heidelberg–New York, 1967
[3] V. S. Monakhov, E. E. Gribovskaya, “O maksimalnykh i silovskikh podgruppakh konechnykh razreshimykh grupp”, Matematicheskie zametki, 70:4 (2001), 603–612 | DOI | MR | Zbl
[4] V. S. Monakhov, A. A. Trofimuk, “On a finite group having a normal series whose factors have bicyclic Sylow subgroups”, Communications in Algebra, 39:9 (2011), 3178–3186 | DOI | MR | Zbl
[5] D. V. Gritsuk, V. S. Monakhov, O. A. Shpyrko, “O proizvodnoi $\pi$-dline $\pi$-razreshimoi gruppy”, Vestnik BGU. Seriya 1, 2012, no. 3, 90–95
[6] D. V. Gritsuk, V. S. Monakhov, O. A. Shpyrko, “O konechnykh $\pi$-razreshimykh gruppakh s bitsiklicheskimi silovskimi podgruppami”, Problemy matematiki, fiziki i tekhniki, 2013, no. 1 (14), 61–66
[7] D. V. Gritsuk, V. S. Monakhov, “O razreshimykh gruppakh, silovskie podgruppy kotorykh abelevy ili ekstraspetsialnye”, Trudy instituta matematiki NAN Belarusi, 20:2 (2012), 3–9 | MR
[8] V. S. Monakhov, D. V. Gritsuk, “O proizvodnoi $\pi$-dline konechnoi $\pi$-razreshimoi gruppy s zadannoi $\pi$-khollovoi podgruppoi”, Trudy instituta matematiki i mekhaniki UrO RAN, 18, no. 3, 2013, 215–223
[9] V. S. Monakhov, A. A. Trofimuk, “O konechnykh razreshimykh gruppakh fiksirovannogo ranga”, Sibirskii matematicheskii zhurnal, 52:5 (2011), 1123–1137 | MR | Zbl
[10] B. Huppert, N. Blackburn, Finite Groups, v. II, Berlin–Heidelberg–New York, 1982
[11] P. P. Palfy, “Bounds for liner groups of odd order”, Rend. Circ. Mat. Palermo. Ser. 2, 39, Suppl. 23 (1990), 253–263 | MR
[12] R. Baer, “Supersoluble immersion”, Canad. J. Math., 11 (1959), 353–369 | DOI | MR | Zbl