Derived $\pi$-length of a $\pi$-solvable group in which the Sylow $p$-subgroups are either bicyclic or of order~$p^3$
Problemy fiziki, matematiki i tehniki, no. 2 (2014), pp. 54-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

The group is called a bicyclic group if it is the product of two cyclic subgroups. It is proved that the derived $\pi$-length of the $\pi$-solvable groups in which the Sylow $p$-subgroups are either bicyclic or of order $p^3$ for any $p\in\pi$ is at most 7 and if $2\not\in\pi$ then the derived $\pi$-length is at most 4.
Keywords: finite group, bicyclic group, Sylow subgroup, derived $\pi$-length.
Mots-clés : $\pi$-solvable group
@article{PFMT_2014_2_a8,
     author = {D. V. Gritsuk},
     title = {Derived $\pi$-length of a $\pi$-solvable group in which the {Sylow} $p$-subgroups are either bicyclic or of order~$p^3$},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {54--58},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2014_2_a8/}
}
TY  - JOUR
AU  - D. V. Gritsuk
TI  - Derived $\pi$-length of a $\pi$-solvable group in which the Sylow $p$-subgroups are either bicyclic or of order~$p^3$
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2014
SP  - 54
EP  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2014_2_a8/
LA  - ru
ID  - PFMT_2014_2_a8
ER  - 
%0 Journal Article
%A D. V. Gritsuk
%T Derived $\pi$-length of a $\pi$-solvable group in which the Sylow $p$-subgroups are either bicyclic or of order~$p^3$
%J Problemy fiziki, matematiki i tehniki
%D 2014
%P 54-58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2014_2_a8/
%G ru
%F PFMT_2014_2_a8
D. V. Gritsuk. Derived $\pi$-length of a $\pi$-solvable group in which the Sylow $p$-subgroups are either bicyclic or of order~$p^3$. Problemy fiziki, matematiki i tehniki, no. 2 (2014), pp. 54-58. http://geodesic.mathdoc.fr/item/PFMT_2014_2_a8/

[1] V. S. Monakhov, Vvedenie v teoriyu konechnykh grupp i ikh klassov, uchebnoe posobie, Vysheishaya shkola, Minsk, 2006, 207 pp.

[2] B. Huppert, Endliche Gruppen, v. I, Berlin–Heidelberg–New York, 1967

[3] V. S. Monakhov, E. E. Gribovskaya, “O maksimalnykh i silovskikh podgruppakh konechnykh razreshimykh grupp”, Matematicheskie zametki, 70:4 (2001), 603–612 | DOI | MR | Zbl

[4] V. S. Monakhov, A. A. Trofimuk, “On a finite group having a normal series whose factors have bicyclic Sylow subgroups”, Communications in Algebra, 39:9 (2011), 3178–3186 | DOI | MR | Zbl

[5] D. V. Gritsuk, V. S. Monakhov, O. A. Shpyrko, “O proizvodnoi $\pi$-dline $\pi$-razreshimoi gruppy”, Vestnik BGU. Seriya 1, 2012, no. 3, 90–95

[6] D. V. Gritsuk, V. S. Monakhov, O. A. Shpyrko, “O konechnykh $\pi$-razreshimykh gruppakh s bitsiklicheskimi silovskimi podgruppami”, Problemy matematiki, fiziki i tekhniki, 2013, no. 1 (14), 61–66

[7] D. V. Gritsuk, V. S. Monakhov, “O razreshimykh gruppakh, silovskie podgruppy kotorykh abelevy ili ekstraspetsialnye”, Trudy instituta matematiki NAN Belarusi, 20:2 (2012), 3–9 | MR

[8] V. S. Monakhov, D. V. Gritsuk, “O proizvodnoi $\pi$-dline konechnoi $\pi$-razreshimoi gruppy s zadannoi $\pi$-khollovoi podgruppoi”, Trudy instituta matematiki i mekhaniki UrO RAN, 18, no. 3, 2013, 215–223

[9] V. S. Monakhov, A. A. Trofimuk, “O konechnykh razreshimykh gruppakh fiksirovannogo ranga”, Sibirskii matematicheskii zhurnal, 52:5 (2011), 1123–1137 | MR | Zbl

[10] B. Huppert, N. Blackburn, Finite Groups, v. II, Berlin–Heidelberg–New York, 1982

[11] P. P. Palfy, “Bounds for liner groups of odd order”, Rend. Circ. Mat. Palermo. Ser. 2, 39, Suppl. 23 (1990), 253–263 | MR

[12] R. Baer, “Supersoluble immersion”, Canad. J. Math., 11 (1959), 353–369 | DOI | MR | Zbl