Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2014_2_a8, author = {D. V. Gritsuk}, title = {Derived $\pi$-length of a $\pi$-solvable group in which the {Sylow} $p$-subgroups are either bicyclic or of order~$p^3$}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {54--58}, publisher = {mathdoc}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2014_2_a8/} }
TY - JOUR AU - D. V. Gritsuk TI - Derived $\pi$-length of a $\pi$-solvable group in which the Sylow $p$-subgroups are either bicyclic or of order~$p^3$ JO - Problemy fiziki, matematiki i tehniki PY - 2014 SP - 54 EP - 58 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2014_2_a8/ LA - ru ID - PFMT_2014_2_a8 ER -
%0 Journal Article %A D. V. Gritsuk %T Derived $\pi$-length of a $\pi$-solvable group in which the Sylow $p$-subgroups are either bicyclic or of order~$p^3$ %J Problemy fiziki, matematiki i tehniki %D 2014 %P 54-58 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2014_2_a8/ %G ru %F PFMT_2014_2_a8
D. V. Gritsuk. Derived $\pi$-length of a $\pi$-solvable group in which the Sylow $p$-subgroups are either bicyclic or of order~$p^3$. Problemy fiziki, matematiki i tehniki, no. 2 (2014), pp. 54-58. http://geodesic.mathdoc.fr/item/PFMT_2014_2_a8/