Penetration of the sound field of а spherical radiator through the spherical elastic shell
Problemy fiziki, matematiki i tehniki, no. 2 (2014), pp. 25-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

The analytical solution of a boundary problem, describing the process of penetration of the sound field of a spherical radiator, located inside a thin unclosed spherical shell, through the elastic spherical shell is developed. Influence of some parameters of a problem on the value of the attenuation coefficient (screening) of a sound field inside the spherical shell is numerically investigated.
Keywords: dual series equations for Legendre polynomials, infinite system of linear algebraic equations of the second kind with a completely continuous operator, attenuation coefficient of a sound field.
@article{PFMT_2014_2_a3,
     author = {G. Ch. Shushkevich and S. V. Shushkevich and N. N. Kiseleva},
     title = {Penetration of the sound field of {\cyra} spherical radiator through the spherical elastic shell},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {25--32},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2014_2_a3/}
}
TY  - JOUR
AU  - G. Ch. Shushkevich
AU  - S. V. Shushkevich
AU  - N. N. Kiseleva
TI  - Penetration of the sound field of а spherical radiator through the spherical elastic shell
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2014
SP  - 25
EP  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2014_2_a3/
LA  - ru
ID  - PFMT_2014_2_a3
ER  - 
%0 Journal Article
%A G. Ch. Shushkevich
%A S. V. Shushkevich
%A N. N. Kiseleva
%T Penetration of the sound field of а spherical radiator through the spherical elastic shell
%J Problemy fiziki, matematiki i tehniki
%D 2014
%P 25-32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2014_2_a3/
%G ru
%F PFMT_2014_2_a3
G. Ch. Shushkevich; S. V. Shushkevich; N. N. Kiseleva. Penetration of the sound field of а spherical radiator through the spherical elastic shell. Problemy fiziki, matematiki i tehniki, no. 2 (2014), pp. 25-32. http://geodesic.mathdoc.fr/item/PFMT_2014_2_a3/

[1] D. R. Raichel, The science and applications of acoustics, Springer Science+Business Media, N.Y., 2006, 663 pp.

[2] (Data dostupa: 07.01.2014) http://www.icovp.com

[3] (Data dostupa: 07.01.2014) http://onlinereg.ru/noise2013

[4] S. M. Khasheminedzhad, M. Maleki, “Rezonansnoe rasseyanie zvuka pogruzhennoi anizotropnoi sferoi”, Akusticheskii zhurnal, 2008, no. 2, 205–218

[5] A. V. Lebedev, A. I. Khilko, “Rasseyanie ploskoi volny na dvukh uprugikh sharakh i sfericheskikh obolochkakh”, Akusticheskii zhurnal, 1997, no. 4, 521–530

[6] D. V. Sivukhin, “Difraktsiya ploskoi zvukovoi volny na sfericheskoi polosti”, Akusticheskii zhurnal, 1955, no. 1, 78–88

[7] V. Latard et al., “Acoustic scattering of impulsive geometrical waves by a glass sphere in water”, Applied physics letters, 74 (1999), 1918–1921 | DOI

[8] H. Huang, G. C. Gaunaurd, “Acoustic scattering of a plane wave by two spherical elastic shells”, Journ. Soc. Amer., 98 (1995), 2149–2156

[9] S. M. Hasheminejad, B. Harsini, “Effects of dynamic viscoelastic properties on acoustic diffraction by a solid sphere submerged in a viscous fluid”, Archives of Applied Mechanics, 72 (2003), 697–712 | DOI | Zbl

[10] S. M. Hasheminejad, N. Safari, “Acoustic scattering from viscoelastically coated spheres and cylinders in viscous fluids”, Journal of Sound and Vibration, 280 (2005), 101–125 | DOI

[11] F. G. Mitri, “Acoustic radiation force acting on absorbing spherical shells”, Wave Motion, 43 (2005), 12–19 | DOI | MR | Zbl

[12] L. A. Tolokonnikov, Yu. M. Filatova, “Difraktsiya ploskoi zvukovoi volny na uprugom share s proizvolno raspolozhennoi sfericheskoi polostyu”, Izvestiya TulGU. Estestvennye nauki, 2010, no. 1, 115–123

[13] V. A. Kovalev, E. D. Kovaleva, “Matematicheskoe modelirovanie v zadachakh rasseyaniya akusticheskikh voln uprugimi obolochkami s pomoschyu asimptoticheskikh metodov”, Vestnik SamGU. Estestvennonauchnaya seriya, 2008, no. 6, 244–259 | MR

[14] V. Novatskii, Teoriya uprugosti, Mir, M., 1970, 873 pp.

[15] V. T. Grinchenko, I. V. Vovk, V. T. Matsypura, Osnovy akustiki, Naukova dumka, Kiev, 2007, 640 pp.

[16] E. L. Shendarev, Izluchenie i rasseyanie zvuka, Sudostroenie, L., 1989, 304 pp.

[17] E. A. Ivanov, Difraktsiya elektromagnitnykh voln na dvukh telakh, Nauka i tekhnika, Minsk, 1968, 584 pp.

[18] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i tablitsami, Nauka, M., 1979, 830 pp. | MR

[19] V. T. Erofeenko, Teoremy slozheniya, Nauka i tekhnika, Minsk, 1989, 240 pp. | MR | Zbl

[20] G. Ch. Shushkevich, Raschet elektrostaticheskikh polei metodom parnykh, troinykh uravnenii s ispolzovaniem teorem slozheniya, GrGU, Grodno, 1999, 238 pp.

[21] V. A. Rezunenko, “Difraktsiya ploskoi zvukovoi volny na sfere s krugovym otverstiem”, Visnik Kharkiv. nats. univer. im. V. N. Karazina. Ser. «Mat., prik. mat. i mekh.», 2009, no. 850, 71–77 | Zbl

[22] G. Ch. Shushkevich, S. V. Shushkevich, Kompyuternye tekhnologii v matematike. Sistema Mathcad 14, v. 1, Izd-vo Grevtsova, Minsk, 2010, 287 pp.

[23] Yu. Petrov, Obespechenie dostovernosti i nadezhnosti kompyuternykh raschetov, BKhV-Peterburg, SPb., 2012, 160 pp.

[24] V. M. Verzhbitskii, Osnovy chislennykh metodov, Vysshaya shkola, M., 2002, 848 pp.