Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2014_2_a2, author = {E. V. Shmatok and O. M. Ostrikov}, title = {Calculation of stresses and displacements in $\mathrm{Ni_2MnGa}$ have lenticular twin using tetrafunctional model with a continuous distribution of twinning dislocations at the twin boundaries}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {19--24}, publisher = {mathdoc}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2014_2_a2/} }
TY - JOUR AU - E. V. Shmatok AU - O. M. Ostrikov TI - Calculation of stresses and displacements in $\mathrm{Ni_2MnGa}$ have lenticular twin using tetrafunctional model with a continuous distribution of twinning dislocations at the twin boundaries JO - Problemy fiziki, matematiki i tehniki PY - 2014 SP - 19 EP - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2014_2_a2/ LA - ru ID - PFMT_2014_2_a2 ER -
%0 Journal Article %A E. V. Shmatok %A O. M. Ostrikov %T Calculation of stresses and displacements in $\mathrm{Ni_2MnGa}$ have lenticular twin using tetrafunctional model with a continuous distribution of twinning dislocations at the twin boundaries %J Problemy fiziki, matematiki i tehniki %D 2014 %P 19-24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2014_2_a2/ %G ru %F PFMT_2014_2_a2
E. V. Shmatok; O. M. Ostrikov. Calculation of stresses and displacements in $\mathrm{Ni_2MnGa}$ have lenticular twin using tetrafunctional model with a continuous distribution of twinning dislocations at the twin boundaries. Problemy fiziki, matematiki i tehniki, no. 2 (2014), pp. 19-24. http://geodesic.mathdoc.fr/item/PFMT_2014_2_a2/
[1] O. M. Ostrikov, Mekhanika dvoinikovaniya tverdykh tel, Monografiya, Uchrezhdenie obrazovaniya «Gomelskii gosudarstvennyi tekhnicheskii universitet imeni P. O. Sukhogo», Gomel, 2008, 301 pp.
[2] O. M. Ostrikov, A. L. Sozinov, A. V. Soroka, “Issledovanie plasticheskoi deformatsii poverkhnosti monokristalla $\mathrm{Ni_2MnGa}$ metodom indentirovaniya”, Inzhenerno-fizicheskii zhurnal, 85:5 (2012), 1132–1141
[3] O. M. Ostrikov, E. V. Shmatok, “Osobennosti mekhanicheskogo dvoinikovaniya, lokalnogo razrusheniya i formirovaniya kanalov Roze v monokristallakh $\mathrm{Ni_2MnGa}$ pri indentirovanii ikh poverkhnosti piramidoi Vikkersa”, Materialy. Tekhnologii. Instrumenty, 18:3 (2013), 5–10
[4] O. M. Ostrikov, “Dislokatsionnaya makroskopicheskaya model klinovidnogo dvoinika”, Vestnik GGTU im. P. O. Sukhogo, 2006, no. 2, 10–18 | Zbl
[5] A. M. Kosevich, V. S. Boiko, “Dislokatsionnaya teoriya uprugogo dvoinikovaniya kristallov”, Uspekhi fizicheskikh nauk, 104:2 (1971), 101–255
[6] A. M. Kosevich, Dislokatsii v teorii uprugosti, Nauk. Dumka, Kiev, 1978, 220 pp.
[7] A. Sozinov et al., “Giant magnetic-field-induced strain in $\mathrm{NiMnGa}$ seven-layered martensitic phase”, Appl. Phys. Lett., 80 (2002), 1746–1748 | DOI
[8] O. Heczko, L. Straka, “Temperature dependence and temperature limits of magnetic shape memory effect”, Journal of Applied Physics, 94:11 (2003), 7139–7143 | DOI
[9] O. Heczko, K. Jurek, K. Ullakko, “Magnetic properties and domain structure of magnetic shape memory $\mathrm{Ni}$-$\mathrm{Mn}$-$\mathrm{Ga}$ alloy”, Journal of Magnetism and Magnetic Materials, 226–230 (2001), 996–998 | DOI