On finite $ca$-$\mathfrak{F}$-groups
Problemy fiziki, matematiki i tehniki, no. 2 (2014), pp. 64-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{F}$ be a class of groups. A finite group $G$ is called a $ca$-$\mathfrak{F}$-group if its every abelian chief factor of $G$ is $\mathfrak{F}$-central and every nonabelian chief factor of $G$ is a simple group. It is established that the class of $ca$-$\mathfrak{F}$-groups forms a composite formation. The properties of the products of normal $ca$-$\mathfrak{F}$-subgroups of finite groups are investigated.
Keywords: finite group, $ca$-$\mathfrak{F}$-group
Mots-clés : composition formation, radical formation, semiradical formation.
@article{PFMT_2014_2_a10,
     author = {E. N. Myslovets},
     title = {On finite $ca$-$\mathfrak{F}$-groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {64--68},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2014_2_a10/}
}
TY  - JOUR
AU  - E. N. Myslovets
TI  - On finite $ca$-$\mathfrak{F}$-groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2014
SP  - 64
EP  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2014_2_a10/
LA  - ru
ID  - PFMT_2014_2_a10
ER  - 
%0 Journal Article
%A E. N. Myslovets
%T On finite $ca$-$\mathfrak{F}$-groups
%J Problemy fiziki, matematiki i tehniki
%D 2014
%P 64-68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2014_2_a10/
%G ru
%F PFMT_2014_2_a10
E. N. Myslovets. On finite $ca$-$\mathfrak{F}$-groups. Problemy fiziki, matematiki i tehniki, no. 2 (2014), pp. 64-68. http://geodesic.mathdoc.fr/item/PFMT_2014_2_a10/

[1] W. Gaschütz, “Zur Theorie der endlichen auflosbaren Gruppen”, Math. Z., 80:4 (1963), 300–305 | MR | Zbl

[2] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp. | MR | Zbl

[3] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992, 891 pp. | MR

[4] V. A. Vedernikov, “O nekotorykh klassakh konechnykh grupp”, Doklady AN BSSR, 2:10 (1988), 872–875 | MR

[5] A. F. Vasilev, T. I. Vasileva, “O konechnykh gruppakh, u kotorykh glavnye faktory yavlyayutsya prostymi gruppami”, Izvestiya vuzov. Seriya Matematika, 426:11 (1997), 10–14

[6] D. J. S. Robinson, “The structure of finite groups in which permutability is a transitive relation”, J. Austral. Math. Soc., 70 (2001), 143–149 | DOI | MR

[7] W. Guo, A. N. Skiba, “On finite quazi-$\mathfrak{F}$-groups”, Communication in Algebra, 37 (2009), 470–481 | DOI | MR | Zbl

[8] W. Guo, A. N. Skiba, “On some classes of finite quazi-$\mathfrak{F}$-groups”, Journal of Group Theory, 12 (2009), 407–417 | DOI | MR | Zbl

[9] L. A. Shemetkov, A. N. Skiba, Formatsii algebraicheskikh sistem, Nauka, M., 1989, 256 pp. | MR

[10] T. I. Vasileva, “Poluradikalnye formatsii konechnykh grupp”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny. Voprosy algebry, 1:1 (15) (1999), 71–77 | MR | Zbl

[11] B. Huppert, N. Blackburn, Endliche Gruppen, v. III, Springer, Berlin, 1982, 454 pp. | MR