Relativistic scattering problem for two-particle systems with one-boson exchange potentials
Problemy fiziki, matematiki i tehniki, no. 2 (2014), pp. 13-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical solutions of quantum field theory equations describing scattering $s$-states of two scalar particles are found in cases of a one-boson exchange potential and the Yukawa potential. Scattering amplitudes, scattering lengths and phase shifts are calculated on the basis of the solutions obtained. It is shown that the scattering amplitudes found satisfy a unitarity condition. The comparison of the results obtained in this simple model with experimental data for neutron-proton systems is carried out.
Keywords: two-particle equations, relativistic configurational representation, one-boson exchange potential, scattering amplitude, scattering length, phase shift
Mots-clés : composite Gaussian quadrature, deuteron.
@article{PFMT_2014_2_a1,
     author = {Yu. A. Grishechkin and V. N. Kapshai},
     title = {Relativistic scattering problem for two-particle systems with one-boson exchange potentials},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {13--18},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2014_2_a1/}
}
TY  - JOUR
AU  - Yu. A. Grishechkin
AU  - V. N. Kapshai
TI  - Relativistic scattering problem for two-particle systems with one-boson exchange potentials
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2014
SP  - 13
EP  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2014_2_a1/
LA  - ru
ID  - PFMT_2014_2_a1
ER  - 
%0 Journal Article
%A Yu. A. Grishechkin
%A V. N. Kapshai
%T Relativistic scattering problem for two-particle systems with one-boson exchange potentials
%J Problemy fiziki, matematiki i tehniki
%D 2014
%P 13-18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2014_2_a1/
%G ru
%F PFMT_2014_2_a1
Yu. A. Grishechkin; V. N. Kapshai. Relativistic scattering problem for two-particle systems with one-boson exchange potentials. Problemy fiziki, matematiki i tehniki, no. 2 (2014), pp. 13-18. http://geodesic.mathdoc.fr/item/PFMT_2014_2_a1/

[1] A. A. Logunov, A. N. Tavkhelidze, “Quasi-Optical Approach in Quantum Field Theory”, Nuovo Cimento, 29:2 (1963), 380–399 | DOI | MR

[2] V. G. Kadyshevsky, “Quasipotential type equation for the relativistic scattering amplitude”, Nucl. Phys. B, 6:1 (1968), 125–148 | DOI

[3] V. G. Kadyshevskii, R. M. Mir-Kasimov, N. B. Skachkov, “Trekhmernaya formulirovka relyativistskoi problemy dvukh tel”, EChAYa, 2:3 (1972), 635–690

[4] V. N. Kapshai, Yu. A. Grishechkin, “Form-factors of relativistic bound state systems of two scalar particles with one-boson exchange potential”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny. Estestvennye nauki, 2011, no. 69 (6), 70–74

[5] Yu. A. Grishechkin, V. N. Kapshai, “Numerical solution of relativistic problems on bound states of systems of two spinless particles”, Russian Physics Journal, 56:4 (2013), 435–443 | DOI

[6] L. M. Delves, J. Walsh, Numerical solution of integral equations, Oxford university press, London, 1974, 339 pp. | MR | Zbl

[7] A. Deloff, “Semi-Spectral Chebyshev Method in Quantum Mechanics”, Annals of Physics, 322 (2007), 1373–1419 | DOI | MR | Zbl

[8] T. A. Alferova, V. N. Kapshai, “Expansion in terms of matrix elements of the Lorentz group unitary irreducible representations and integral equations for scattering states relativistic wave functions”, Nonlinear phenomena in complex systems, Proced. of the Sixth Annual Seminar NPCS'97, Academy of Sciences of Belarus. Inst. of Phys., Minsk, 1998, 78–85

[9] V. N. Kapshai, T. A. Alferova, “Relativistic two-particle one-dimensional scattering problem for superposition of $\delta$-potentials”, J. Phys. A, 32 (1999), 5329–5342 | DOI | MR | Zbl

[10] Dzh. Teilor, Teoriya rasseyaniya, Mir, M., 1975, 568 pp.

[11] R. Nyuton, Teoriya rasseyaniya voln i chastits, Mir, M., 1969, 608 pp.

[12] N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobelkov, Chislennye metody, 7-e izd., Binom. Laboratoriya bazovykh znanii, M., 2011, 636 pp.

[13] H. H. Kalitkin, Chislennye metody, BKhV-Peterburg, Sankt-Peterburg, 2011, 592 pp.

[14] V. Kapshai, Yu. Grishechkin, Relativistic two-particle equations with superposition of delta-shell potentials: scattering and bound states, 2013, arXiv: (06.12.2013) 1312.1902v1 [math-ph]

[15] K. Nakamura et al., “Review of Particle Physics”, Journal of Physics G, 37 (2010), 075021 | DOI

[16] C. Van Der Leun, C. Alderliesten, “The Deuteron Binding Energy”, Nucl. Phys. A, 380 (1982), 261–269 | DOI

[17] O. Dumbrajs et al., “Compilation of Coupling Constants and Low energy parameters”, Nucl. Physics B, 216 (1983), 277–335 | DOI

[18] M. H. MacGregor, R. A. Arndt, R. M. Wright, “Determination of the Nucleon-Nucleon Scattering Matrix. X: $(p,p)$ and $(n,p)$ Analysis from 1 to 450 MeV”, Phys. Rev., 182 (1969), 1714–1728 | DOI