Structural properties of $\mathrm{Pb}_{1-x}\mathrm{Sn}_x\mathrm{Te}$ thin films prepared by the “hot wall” method
Problemy fiziki, matematiki i tehniki, no. 1 (2014), pp. 26-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, crystalline microstructure, chemical composition and morphology of $\mathrm{Pb}_{1-x}\mathrm{Sn}_x\mathrm{Te}$ thin films with the composition range of $0,05\leqslant x \leqslant 0,80$ prepared by the “hot wall” method on glass substrates were investigated. The $\mathrm{X}$-ray diffraction studies showed a polycrystalline single phase cubic crystalline structure with the dependence of the lattice constant on composition $x$ with a linear behavior described by the Vegard's law. The energy dispersive analysis showed that the obtained films are homogeneous and the compositions of the films are reproducible. Scanning electron microscopy revealed the thin films microstructure consisted of densely packed crystals with dimensions of $0,3$$4,0$ $\mu$m and crystallite growth direction is perpendicular to substrate plane.
Keywords: lead tin telluride, “hot wall” method, polycrystalline films, crystalline structure, lattice parameter, chemical composition.
@article{PFMT_2014_1_a4,
     author = {Hassan Seidi and V. F. Gremenok and V. A. Ivanov},
     title = {Structural properties of $\mathrm{Pb}_{1-x}\mathrm{Sn}_x\mathrm{Te}$ thin films prepared by the {\textquotedblleft}hot wall{\textquotedblright} method},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {26--30},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2014_1_a4/}
}
TY  - JOUR
AU  - Hassan Seidi
AU  - V. F. Gremenok
AU  - V. A. Ivanov
TI  - Structural properties of $\mathrm{Pb}_{1-x}\mathrm{Sn}_x\mathrm{Te}$ thin films prepared by the “hot wall” method
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2014
SP  - 26
EP  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2014_1_a4/
LA  - en
ID  - PFMT_2014_1_a4
ER  - 
%0 Journal Article
%A Hassan Seidi
%A V. F. Gremenok
%A V. A. Ivanov
%T Structural properties of $\mathrm{Pb}_{1-x}\mathrm{Sn}_x\mathrm{Te}$ thin films prepared by the “hot wall” method
%J Problemy fiziki, matematiki i tehniki
%D 2014
%P 26-30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2014_1_a4/
%G en
%F PFMT_2014_1_a4
Hassan Seidi; V. F. Gremenok; V. A. Ivanov. Structural properties of $\mathrm{Pb}_{1-x}\mathrm{Sn}_x\mathrm{Te}$ thin films prepared by the “hot wall” method. Problemy fiziki, matematiki i tehniki, no. 1 (2014), pp. 26-30. http://geodesic.mathdoc.fr/item/PFMT_2014_1_a4/

[1] S. C. Das, S. Bhattacherjee, A. K. Chaudhuri, “Electron microscopic studies of vacuum-evaporated $\mathrm{Pb}_{1-x}\mathrm{Sn}_x\mathrm{Te}$ thin films”, Bull. Mater. Sci., 16:3 (1993), 159–170 | DOI

[2] C. Boschetti et al., “Molecular beam epitaxial growth of $\mathrm{PbTe}$ and $\mathrm{PbSnTe}$ on $\mathrm{Si(100)}$ substrates for heterojunction infrared detector”, Infrared Phys. Technol., 42:2 (2001), 91–99 | DOI

[3] S. O. Ferreira et al., “Experimental observation of band inversion in the $\mathrm{PbSnTe}$ system”, J. Appl. Phys., 86:12 (1999), 7198–7200 | DOI

[4] B. Steiner et al., “High resolution $\mathrm{X}$-ray diffraction imaging of lead tin telluride”, J. Crystal Growth, 114:4 (1991), 707–714 | DOI

[5] W. Nugraha et al., “Growth and crystal properties of $\mathrm{Tl}$-doped $\mathrm{PbTe}$ crystals grown by Bridgman method under $\mathrm{Pb}$ and $\mathrm{Te}$ vapor pressure”, J. Cryst. Growth., 222:1 (2001), 38–43 | DOI

[6] A. Y. Ueta et al., “$\mathrm{IV}$–$\mathrm{VI}$ compound heterostructures grown by molecular beam epitaxy”, J. Microelectron, 33:4 (2002), 331–335 | DOI

[7] Z. Feit et al., “Liquid phase epitaxy grown $\mathrm{PbSnSeTe/PbSe}$ double heterostructure diode lasers”, Infrared Phys. Technol., 37:4 (1996), 439–443 | DOI

[8] Y. Nishijima, “$\mathrm{PbSnTe}$ double-heterostructure lasers and $\mathrm{PbEuTe}$ double-heterostructure lasers by hot-wall epitaxy”, J. Appl. Phys., 65:3 (1989), 935–940 | DOI

[9] M. Yoshikawa, K. Shinohara, R. Ueda, “Continuous operation over 1500 h of a $\mathrm{PbTe/PbSnTe}$ double heterostructure laser at 77 K”, Appl. Phys. Lett., 31:10 (1977), 699–701 | DOI

[10] L. D. Hicks et al., “Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit”, Phys. Rev. B, 53:16 (1996), 10493–10496 | DOI

[11] C. Boschetti et al., “Growth of narrow gap epilayers $p-n$ junctions on silicon for infrared detectors arrays”, Infrared Phys. Technol., 34:3 (1993), 281–287 | DOI | MR

[12] M. A. Rafea et al., “Effect of substrate type and optimization of the preparation condition for $\mathrm{PbSnTe}$ films used as $IR$ photoconductors”, Optoelectron. Adv. Mater., 3:6 (2009), 543–552

[13] M. A. Rafea et al., “Effect of substrate temperature on the galvanomagnetic, photoelectrical and optical properties of $\mathrm{Pb_{0.8}Sn_{0.2}Te}$ thin films”, Chalcogenide Lett., 6:3 (2009), 115–123

[14] V. A. Ivanov et al., “Electrical properties of hot wall deposited $\mathrm{PbTe}$-$\mathrm{SnTe}$ thin films”, Journal of Nanosystems: Physics, Chemistry and Mathematics, 4:6 (2013), 816–822

[15] D. M. Unuchak et al., “Electrical properties of $\mathrm{Pb}_x\mathrm{Sn}_{1-x}\mathrm{S}$ thin films prepared by hot wall deposition method”, Cryst. Res. Technol., 45:11 (2010), 1113–1116 | DOI

[16] S. A. Bashkirov, V. F. Gremenok, V. A. Ivanov, “Physical properties of $\mathrm{SnS}$ thin films fabricated by hot wall deposition”, Semicond., 45:6 (2011), 749–752 | DOI

[17] S. Mukherjee et al., “Lead salt thin film Semiconductors for microelectronic applications”, Transworld Research Network, 2010, 1–88

[18] A. V. Dmitriev, I. P. Zvyagin, “Current trends in the physics of thermoelectric materials”, Phys. Usp., 53:8 (2010), 789–803 | DOI | MR

[19] S. P. Zimin et al., “Micromasking effect and nanostructure self-formation on the surface of lead chalcogenide epitaxial films on $\mathrm{Si}$ substrates during argon plasma treatment”, J. Phys. D: Appl. Phys., 42:16 (2009), 165205-6 | DOI

[20] H. Seidi, V. F. Gremenok, V. A. Ivanov, “Preparation and investigation of microstructural properties of $\mathrm{Pb}_x\mathrm{Sn}_{1-x}\mathrm{Te}$ bulk alloys”, Problems of Physics, Mathematics and Technics, 4:17 (2013), 1–4 | DOI

[21] I. U. Arachchige, M. G. Kanatzidis, “Anomalous Band Gap Evolution from Band Inversion in $\mathrm{Pb}_{1-x}\mathrm{Sn}_x\mathrm{Te}$ Nanocrystals”, Nano Lett., 9:4 (2009), 1583–1587 | DOI

[22] P. H. O. Rappl et al., “Molecular beam epitaxial growth of high quality $\mathrm{Pb}_{1-x}\mathrm{Sn}_x\mathrm{Te}$ layers with $0\leqslant x\leqslant 1$”, J. Cryst. Growth, 191:3 (1998), 466–471 | DOI

[23] R. F. Bis, J. R. Dixon, “Applicability of Vegard's Law to the $\mathrm{Pb}_x\mathrm{Sn}_{1-x}\mathrm{Te}$ Alloy System”, J. Appl. Phys., 40:4 (1969), 1918–1921 | DOI

[24] K. P. Acharya et al., “$\mathrm{CdS}$ thin films formed on flexible plastic substrates by pulsed-laser deposition”, J. Phys.: Condens. Matter, 19:19 (2007), 196221 | DOI

[25] E. Bardet et al., “The grain size in microcrystalline silicon: correlation between atomic force microscopy, UV reflectometry, ellipsometry, and $\mathrm{X}$-ray diffractometry”, J. Non-Cryst. Solids, 198–200:2 (1996), 867–870 | DOI

[26] A. Erlacher et al., “Texture and surface analysis of thin-film $\mathrm{GaAs}$ on glass formed by pulsed-laser deposition”, J. Non-Cryst. Solids, 352:2 (2006), 193–196 | DOI