Influence of thickness on structural properties of annealed $\mathrm{In_2S_3}$ thin films deposited by thermal evaporation
Problemy fiziki, matematiki i tehniki, no. 1 (2014), pp. 21-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

$\mathrm{In_2S_3}$ thin films of various thicknesses were deposited onto glass substrates by thermal evaporation technique. Thicknesses of $\mathrm{In_2S_3}$ films were defined by controlling the deposition parameters and were $1200$ nm, $470$ nm and $50$ nm. All prepared thin films were annealed at $400^\circ$C for $60$ min. The structural properties and morphology have been studied by $\mathrm{X}$-ray diffraction, Raman spectroscopy and Atomic force microscopy. $\mathrm{X}$-ray diffraction results of $\mathrm{In_2S_3}$ thin films with thicknesses of $1200$ nm and $470$ nm demonstrated peaks revealed in tetragonal structure. Raman spectroscopy shows that the intensity of peaks is affected by the film thickness. The average roughness ($R_a$) and the root mean square roughness ($R_{\text{RMS}}$) increases with thickness. This is associated with the increase of grain size in the $\mathrm{In_2S_3}$ films.
Keywords: $\mathrm{In_2S_3}$ thin films, thermal evaporation, structural and morphological properties, grain size.
@article{PFMT_2014_1_a3,
     author = {H. Izadneshan and V. F. Gremenok},
     title = {Influence of thickness on structural properties of annealed $\mathrm{In_2S_3}$ thin films deposited by thermal evaporation},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {21--25},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2014_1_a3/}
}
TY  - JOUR
AU  - H. Izadneshan
AU  - V. F. Gremenok
TI  - Influence of thickness on structural properties of annealed $\mathrm{In_2S_3}$ thin films deposited by thermal evaporation
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2014
SP  - 21
EP  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2014_1_a3/
LA  - en
ID  - PFMT_2014_1_a3
ER  - 
%0 Journal Article
%A H. Izadneshan
%A V. F. Gremenok
%T Influence of thickness on structural properties of annealed $\mathrm{In_2S_3}$ thin films deposited by thermal evaporation
%J Problemy fiziki, matematiki i tehniki
%D 2014
%P 21-25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2014_1_a3/
%G en
%F PFMT_2014_1_a3
H. Izadneshan; V. F. Gremenok. Influence of thickness on structural properties of annealed $\mathrm{In_2S_3}$ thin films deposited by thermal evaporation. Problemy fiziki, matematiki i tehniki, no. 1 (2014), pp. 21-25. http://geodesic.mathdoc.fr/item/PFMT_2014_1_a3/

[1] R. O. Hayre et al., “Mott–Schottky and charge-transport analysis of nanoporous titanium dioxide films in air”, Journal of Physical Chemistry C, 111 (2007), 4809–4814 | DOI

[2] N. Naghavi et al., “Buffer layers and transparent conducting oxides for chalcopyrite $\mathrm{Cu(In,Ga)(S,Se)}_2$ based thin film photovoltaics: present status and current developments”, Progress in Photovoltaics, 18 (2010), 411–433 | DOI

[3] S. K. Sarkar et al., “$\mathrm{In_2S_3}$ atomic layer deposition and its application as a sensitizer on $\mathrm{TiO}_2$ nanotube arrays for solar energy conversion”, Journal of Physical Chemistry C, 114 (2010), 8032–8039 | DOI

[4] Y. He et al., “A new application of nanocrystal $\mathrm{In_2S_3}$ in efficient degradation of organic pollutants under visible light irradiation”, Journal of Physical Chemistry C, 113 (2009), 5254–5262 | DOI

[5] C. Gao et al., “Preparation and visible-light photocatalytic activity of $\mathrm{In_2S_3/TiO_2}$ composite”, Materials Chemistry and Physics, 122 (2010), 183–187 | DOI

[6] D. Hariskos, S. Spiering, “Buffer layers in $\mathrm{Cu(In,Ga)Se_2}$ solar cells and modules”, Thin solid films, 480 (2005), 99–109 | DOI

[7] E. B. Yousfi et al., “Atomic layer deposition of zinc oxide and indium sulfide layers for $\mathrm{Cu(In,Ga)Se_2}$ thin-film solar cells”, Thin Solid Films, 387 (2001), 29–32 | DOI

[8] S. Spiering et al., “Large-area $\mathrm{Cd}$-free CIGS solar modules with $\mathrm{In_2S_3}$ buffer layer deposited by ALCVD”, Thin Solid Films, 451 (2004), 562–566 | DOI

[9] S. Merdes et al., “Surface photovoltage analyses of $\mathrm{Cu(In,Ga)S_2/CdS}$ and $\mathrm{Cu(In,Ga)S_2/In_2S_3}$ photovoltaic junctions”, Applied Physics Letters, 102 (2013), 2139021-3 | DOI

[10] N. Revathi, P. Prathap, K. T. Ramakrishna, “Thickness dependent physical properties of close space evaporated $\mathrm{In_2S_3}$ thin films”, Solid State Sciences, 11 (2009), 1288–1296 | DOI

[11] H. Izadneshan, V. F. Geremenok, “$\mathrm{In_2S_3}$ Thin Films Produced by Thermal Evaporation for Solar Cell Applications”, Proceeding of the 9th Belarusian-Russian Workshop Semiconductor Lasers and Systems (Belarus, Minsk, 28–31 May 2013), National Academy of Sciences of Belarus, Stepanov Institute of Physics, Minsk, 2013, 241–244

[12] O. V. Goncharova, V. F. Gremenok, “Microstructure and optical properties of $\mathrm{In_2S_3}$ films produced by thermal evaporation”, Semiconductors, 43 (2009), 96–101 | DOI

[13] Powder Diffraction File, Card 250390, Joint Committee on Powder Diffraction Standards, ASTM, Philadelphia, PA, 1967

[14] W. Vallejo, J. Clavijo, G. Gordillo, “CGS Based Solar Cells with $\mathrm{In_2S_3}$ Buffer Layer Deposited by CBD and Coevaporation”, Brazilian Journal of Physics, 40 (2010), 30–37 | DOI

[15] H. Tao et al., “Raman and infrared spectroscopic study of the defect spinel $\mathrm{In_{21.333}S_{32}}$”, Optoelectronics and Advanced Materials, Rapid Communications, 2 (2008), 356–359

[16] Y. Xiong et al., “A novel in situ oxidization-sulfidation growth route via self-purification process to $\beta$-$\mathrm{In_2S_3}$ dendrites”, Journal of Solid State Chemistry, 166 (2002), 336–340 | DOI

[17] C. Kittle, Introduction to solid state physics, New York, 2005, 25 pp.

[18] K. Kambas, J. Spyridelis, M. Balkanski, “Far Infrared and Raman Optical Study of $\alpha$- and $\beta$-$\mathrm{In_2S_3}$ Compounds”, Physica Status Solidi, 105 (1981), 291–296 | DOI

[19] C. Guillén, J. Herrero, “Polycrystalline growth and recrystallization processes in sputtered ITO thin films”, Thin Solid Films, 510 (2006), 260–264 | DOI

[20] B. Asenjo et al., “Properties of $\mathrm{In_2S_3}$ thin films deposited onto ITO/glass substrates by chemical bath deposition”, J. Phys. Chem. Solids, 71 (2010), 1629–1633 | DOI

[21] F. Kevin, “Raman scattering as a technique of measuring film thickness: interference effects in thin growing films”, Applied Optics, 26 (1987), 4482–4486 | DOI

[22] R. Ramirez et al., “Structural transition of chemically deposited $\mathrm{CdS}$ films on thermal annealing”, J. Phys. Cond. Matter, 9 (1997), 10051–10058 | DOI

[23] L. J. Meng et al., “The effect of the ion beam energy on the properties of indium tin oxide thin films prepared by ion beam assisted deposition”, Thin Solid Films, 516 (2008), 1365–1369 | DOI

[24] X. L. Tong et al., “The influence of the silicon substrate temperature on structural and optical properties of thin-film cadmium sulfide formed with femtosecond laser deposition”, Physics B, 382 (2006), 105–109 | DOI