On the periodic solutions of the rational differential equations
Problemy fiziki, matematiki i tehniki, no. 1 (2014), pp. 81-84

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper Mironenko method to study the periodic solutions of the rational differential equations is used. The obtained results to derive the sufficient conditions for a critical point of some polynomial differential systems to be a center are applied.
Keywords: reflecting function; center conditions; periodic solution.
@article{PFMT_2014_1_a13,
     author = {Zhengxin Zhou},
     title = {On the periodic solutions of the rational differential equations},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {81--84},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2014_1_a13/}
}
TY  - JOUR
AU  - Zhengxin Zhou
TI  - On the periodic solutions of the rational differential equations
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2014
SP  - 81
EP  - 84
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2014_1_a13/
LA  - en
ID  - PFMT_2014_1_a13
ER  - 
%0 Journal Article
%A Zhengxin Zhou
%T On the periodic solutions of the rational differential equations
%J Problemy fiziki, matematiki i tehniki
%D 2014
%P 81-84
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2014_1_a13/
%G en
%F PFMT_2014_1_a13
Zhengxin Zhou. On the periodic solutions of the rational differential equations. Problemy fiziki, matematiki i tehniki, no. 1 (2014), pp. 81-84. http://geodesic.mathdoc.fr/item/PFMT_2014_1_a13/