Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2013_3_a9, author = {V. A. Vasil'ev}, title = {On $p$-nilpotency of one class of finite groups}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {61--65}, publisher = {mathdoc}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2013_3_a9/} }
V. A. Vasil'ev. On $p$-nilpotency of one class of finite groups. Problemy fiziki, matematiki i tehniki, no. 3 (2013), pp. 61-65. http://geodesic.mathdoc.fr/item/PFMT_2013_3_a9/
[1] R. Schmidt, Subgroup Lattices of Groups, Walter de Gruyter, Berlin etc., 1994, 572 pp. | MR | Zbl
[2] R. Schmidt, “Modulare Untergruppen endlicher Gruppen”, J. Ill. Math., 13 (1969), 358–377 | MR | Zbl
[3] V. A. Vasilev, A. N. Skiba, “Ob odnom obobschenii modulyarnykh podgrupp”, Ukrainskii matematicheskii zhurnal, 63:10 (2011), 1314–1325
[4] Shemetkov L. A., Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp. | MR | Zbl
[5] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin etc., 1992, 891 pp. | MR
[6] A. Ballester-Bolinches, L. M. Ezquerro, Classes of Finite Groups, Springer, Dordrecht etc., 2006, 385 pp. | MR | Zbl
[7] L. A. Shemetkov, A. N. Skiba, “On the $\mathfrak{X}\Phi$-hypercentre of finite groups”, Journal of Algebra, 322 (2009), 2106–2117 | DOI | MR | Zbl
[8] B. Huppert, Endliche Gruppen, v. I, Springer, Berlin etc., 1967, 793 pp. | MR | Zbl
[9] A. Ballester-Bolinches, X. Guo, “On complemented subgroups of finite groups”, Arch. Math., 72 (1999), 161–166 | DOI | MR | Zbl
[10] Y. Wang, “$c$-normality of groups and its properties”, J. Algebra, 180 (1996), 954–965 | DOI | MR | Zbl
[11] X. Guo, K. P. Shum, “On $c$-normal maximal and minimal subgroups of Sylow $p$-subgroups”, Arch. Math., 80 (2003), 561–569 | DOI | MR | Zbl
[12] A. Ballester-Bolinches, Y. Wang, X. Y. Guo, “$c$-supplemented subgroups of finite groups”, Glasgow Math. J., 42 (2000), 383–389 | DOI | MR | Zbl
[13] X. Guo, K. P. Shum, “On $p$-nilpotency of finite groups with some subgroups $c$-supplemented”, Arch. Math., 10 (2003), 250–266 | MR