On $p$-nilpotency of one class of finite groups
Problemy fiziki, matematiki i tehniki, no. 3 (2013), pp. 61-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $H$ of a group $G$ is called modular in $G$ if $H$ is a modular element (in sense of Kurosh) of the lattice $L(G)$ of all subgroups of $G$. The subgroup of $H$ generated by all modular subgroups of $G$ contained in $H$ is called the modular core of $H$ and denoted by $H_{mG}$. In the paper a new criterion of the $p$-nilpotency of a group was obtained on the basis of the concept of the $m$-supplemented subgroup which is the extension of concepts of modular and supplemented subgroups respectively.
Keywords: finite group, $p$-nilpotent group, modular subgroup, modular core, $m$-supplemented subgroup, maximal subgroup, cyclic subgroup, Sylow $p$-subgroup.
@article{PFMT_2013_3_a9,
     author = {V. A. Vasil'ev},
     title = {On $p$-nilpotency of one class of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {61--65},
     publisher = {mathdoc},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2013_3_a9/}
}
TY  - JOUR
AU  - V. A. Vasil'ev
TI  - On $p$-nilpotency of one class of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2013
SP  - 61
EP  - 65
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2013_3_a9/
LA  - ru
ID  - PFMT_2013_3_a9
ER  - 
%0 Journal Article
%A V. A. Vasil'ev
%T On $p$-nilpotency of one class of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2013
%P 61-65
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2013_3_a9/
%G ru
%F PFMT_2013_3_a9
V. A. Vasil'ev. On $p$-nilpotency of one class of finite groups. Problemy fiziki, matematiki i tehniki, no. 3 (2013), pp. 61-65. http://geodesic.mathdoc.fr/item/PFMT_2013_3_a9/

[1] R. Schmidt, Subgroup Lattices of Groups, Walter de Gruyter, Berlin etc., 1994, 572 pp. | MR | Zbl

[2] R. Schmidt, “Modulare Untergruppen endlicher Gruppen”, J. Ill. Math., 13 (1969), 358–377 | MR | Zbl

[3] V. A. Vasilev, A. N. Skiba, “Ob odnom obobschenii modulyarnykh podgrupp”, Ukrainskii matematicheskii zhurnal, 63:10 (2011), 1314–1325

[4] Shemetkov L. A., Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp. | MR | Zbl

[5] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin etc., 1992, 891 pp. | MR

[6] A. Ballester-Bolinches, L. M. Ezquerro, Classes of Finite Groups, Springer, Dordrecht etc., 2006, 385 pp. | MR | Zbl

[7] L. A. Shemetkov, A. N. Skiba, “On the $\mathfrak{X}\Phi$-hypercentre of finite groups”, Journal of Algebra, 322 (2009), 2106–2117 | DOI | MR | Zbl

[8] B. Huppert, Endliche Gruppen, v. I, Springer, Berlin etc., 1967, 793 pp. | MR | Zbl

[9] A. Ballester-Bolinches, X. Guo, “On complemented subgroups of finite groups”, Arch. Math., 72 (1999), 161–166 | DOI | MR | Zbl

[10] Y. Wang, “$c$-normality of groups and its properties”, J. Algebra, 180 (1996), 954–965 | DOI | MR | Zbl

[11] X. Guo, K. P. Shum, “On $c$-normal maximal and minimal subgroups of Sylow $p$-subgroups”, Arch. Math., 80 (2003), 561–569 | DOI | MR | Zbl

[12] A. Ballester-Bolinches, Y. Wang, X. Y. Guo, “$c$-supplemented subgroups of finite groups”, Glasgow Math. J., 42 (2000), 383–389 | DOI | MR | Zbl

[13] X. Guo, K. P. Shum, “On $p$-nilpotency of finite groups with some subgroups $c$-supplemented”, Arch. Math., 10 (2003), 250–266 | MR