Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2013_3_a11, author = {Yu. V. Malinkovsky and Zhao Yue}, title = {Steady-state exponential networks with bypassing of communications and with generation of arriving and servicing random size customer batches}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {71--78}, publisher = {mathdoc}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2013_3_a11/} }
TY - JOUR AU - Yu. V. Malinkovsky AU - Zhao Yue TI - Steady-state exponential networks with bypassing of communications and with generation of arriving and servicing random size customer batches JO - Problemy fiziki, matematiki i tehniki PY - 2013 SP - 71 EP - 78 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2013_3_a11/ LA - ru ID - PFMT_2013_3_a11 ER -
%0 Journal Article %A Yu. V. Malinkovsky %A Zhao Yue %T Steady-state exponential networks with bypassing of communications and with generation of arriving and servicing random size customer batches %J Problemy fiziki, matematiki i tehniki %D 2013 %P 71-78 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2013_3_a11/ %G ru %F PFMT_2013_3_a11
Yu. V. Malinkovsky; Zhao Yue. Steady-state exponential networks with bypassing of communications and with generation of arriving and servicing random size customer batches. Problemy fiziki, matematiki i tehniki, no. 3 (2013), pp. 71-78. http://geodesic.mathdoc.fr/item/PFMT_2013_3_a11/
[1] M. Miyazawa, P. G. Taylor, “A Geometric Product-form Distribution for a Queueing Network with Non-standard Batch Arrivals and Batch Transfers”, Adv. Appl. Prob., 29:2 (1997), 1–22 | DOI | MR
[2] X. Chao, M. Pinedo, “On Generalized Networks of Queues with Positive and Negative Arrivals”, Prob. Eng. Inf. Sci., 7 (1993), 301–304 | DOI
[3] X. Chao, M. Pinedo, D. Shaw, “A Network of Assembly Queues with Product-form Solution”, J. Appl. Prob., 33 (1996), 858–869 | DOI | MR | Zbl
[4] Yu. V. Malinkovskii, “Kharakterizatsiya statsionarnogo raspredeleniya setei s gruppovymi peremescheniyami v forme proizvedeniya geometricheskikh raspredelenii”, Problemy fiziki, matematiki i tekhniki, 2009, no. 1 (1), 51–59
[5] Yu. V. Malinkovskii, E. V. Korobeinikova, “Kharakterizatsiya statsionarnogo raspredeleniya setei s gruppovymi peremescheniyami v forme proizvedeniya smeschennykh geometricheskikh raspredelenii”, Avtomatika i telemekhanika, 2010, no. 12, 43–56 | MR | Zbl
[6] F. G. Foster, “On Stochastic Matrices Assosiated with Certain Queueing Process”, Ann. Math. Statist., 24:2 (1953), 355–360 | DOI | MR | Zbl
[7] Yu. V. Malinkovskii, “Seti massovogo obsluzhivaniya s obkhodami uzlov zayavkami”, Avtomatika i telemekhanika, 1988, no. 2, 102–110
[8] F. P. Kelly, Reversibility and Stochastic Networks, Wiley, N. Y., 1979 | MR
[9] P. K. Pollet, “Preserving Partial Balance in Continuous-time Markov Chains”, Adv. Appl. Probab., 19:2 (1987), 431–453 | DOI | MR | Zbl
[10] P. G. Taylor, “Quasi-reversibility and Networks of Queues with Non-Standard Batch Movements”, Oper. Res., 1997, no. 2, 602–610