Polarizability of the pion in the formalism of Duffin--Kemmer
Problemy fiziki, matematiki i tehniki, no. 3 (2013), pp. 16-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Lagrangian in the covariant form and the equation of motion of the pion in the electromagnetic field, taking into account its electric and magnetic polarizabilities were defined in the formalism of Duffin–Kemmer on the basis of the principle of gauge invariance. The amplitude of Compton scattering was defined on the basis of the solution of the equation of the interaction of the pion with the electromagnetic field produced by the method of Green's function, taking into account the impact and polarizabilities of the pion.
Keywords: Compton scattering amplitude, field-theoretical approach, Lagrangian, electric polarizability, magnetic polarizability, formalism of Duffin–Kemmer.
@article{PFMT_2013_3_a1,
     author = {E. V. Vakulina and N. V. Maksimenko},
     title = {Polarizability of the pion in the formalism of {Duffin--Kemmer}},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {16--18},
     publisher = {mathdoc},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2013_3_a1/}
}
TY  - JOUR
AU  - E. V. Vakulina
AU  - N. V. Maksimenko
TI  - Polarizability of the pion in the formalism of Duffin--Kemmer
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2013
SP  - 16
EP  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2013_3_a1/
LA  - ru
ID  - PFMT_2013_3_a1
ER  - 
%0 Journal Article
%A E. V. Vakulina
%A N. V. Maksimenko
%T Polarizability of the pion in the formalism of Duffin--Kemmer
%J Problemy fiziki, matematiki i tehniki
%D 2013
%P 16-18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2013_3_a1/
%G ru
%F PFMT_2013_3_a1
E. V. Vakulina; N. V. Maksimenko. Polarizability of the pion in the formalism of Duffin--Kemmer. Problemy fiziki, matematiki i tehniki, no. 3 (2013), pp. 16-18. http://geodesic.mathdoc.fr/item/PFMT_2013_3_a1/

[1] C. E. Carlson, M. Vanderhaeghen, Constraining off-shell effects using low-energy Compton scattering, 2011, arXiv: (Date of access: 04.10.2011) 1109.3779

[2] M. C. Birse, J. A. McGovern, Proton polarisability contribution to the Lamb shift in mnonic hydrogen at fourth order in chiral perturbation theory, 2012, arXiv: (Date of access: 15.08.2012) 1206.3030[hep-ph]

[3] L. G. Moroz, F. I. Fedorov, “Scattering matrix taking into account the interaction Pauli”, ZhETF, 2:39 (1960), 293–303 | MR

[4] N. V. Maksimenko, L. G. Moroz, “Polarizability and gyration elementary particles”, Problems of atomic science and technology. Series: General and nuclear physics, 1979, no. 4 (10), 26–27

[5] M. I. Levchuk, L. G. Moroz, “The nucleon gyration as one of nucleon electromagnetic structure characteristics”, Proc. Academy of Sciences of BSSR. Ser. fiz.-mat. navuk, 1985, no. 1, 45–54 | MR

[6] V. V. Andreev, N. V. Maksimenko, “Polyarizuemost elementarnykh chastits v teoretiko-polevom podkhode”, Problemy fiziki, matematiki i tekhniki, 2011, no. 4 (9), 7–11 | Zbl

[7] N. V. Maksimenko, “Kovariantnoe opredelenie polyarizuemosti adronov spina edinitsa”, Doklady Akademii nauk Belarusi, 36:6 (1992), 508–510

[8] V. V. Andreev, N. V. Maksimenko, O. M. Deryuzhkova, “Kovariantnye uravneniya dvizheniya v elektromagnitnom pole chastits spina s uchetom polyarizuemostei”, 4 kongress fizikov Belarusi, eds. S. Ya. Kilin i dr., Kovcheg, Minsk, 2013, 19–20

[9] V. G. Baryshevsky, Nuclear optics of polarized media, Energoatomizdat, M., 1995, 315 pp.

[10] A. A. Bogush, Introduction in the calibration of the field theory of electroweak interactions, Science and technology, Minsk, 1987, 359 pp.

[11] J. D. Bjorken, S. D. Drell, Relativistic quantum field theory, v. 1, Science, M., 1978, 295 pp. | MR

[12] V. A. Petrunkin, “Elektricheskaya i magnitnaya polyarizuemosti adronov”, EChAYa, 12:3 (1981), 692–753