Critical groups of hereditary local superradical formation
Problemy fiziki, matematiki i tehniki, no. 2 (2013), pp. 66-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper all critical groups with an identity Frattini subgroup for hereditary local superradical formation are described. New examples of hereditary local superradical formations are obtained.
Mots-clés : formation, simple non-abelian group.
Keywords: superradical formation, critical group
@article{PFMT_2013_2_a9,
     author = {S. F. Kamornikov and V. N. Tyutyanov},
     title = {Critical groups of hereditary local superradical formation},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {66--75},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2013_2_a9/}
}
TY  - JOUR
AU  - S. F. Kamornikov
AU  - V. N. Tyutyanov
TI  - Critical groups of hereditary local superradical formation
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2013
SP  - 66
EP  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2013_2_a9/
LA  - ru
ID  - PFMT_2013_2_a9
ER  - 
%0 Journal Article
%A S. F. Kamornikov
%A V. N. Tyutyanov
%T Critical groups of hereditary local superradical formation
%J Problemy fiziki, matematiki i tehniki
%D 2013
%P 66-75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2013_2_a9/
%G ru
%F PFMT_2013_2_a9
S. F. Kamornikov; V. N. Tyutyanov. Critical groups of hereditary local superradical formation. Problemy fiziki, matematiki i tehniki, no. 2 (2013), pp. 66-75. http://geodesic.mathdoc.fr/item/PFMT_2013_2_a9/

[1] Nereshennye voprosy teorii grupp: Kourovskaya tetrad, Institut matematiki SO RAN, Novosibirsk, 2006, 194 pp.

[2] V. N. Semenchuk, “Razreshimye $\mathfrak{F}$-radikalnye formatsii”, Matematicheskie zametki, 59:2 (1996), 261–266 | DOI | MR | Zbl

[3] V. N. Semenchuk, L. A. Shemetkov, “Sverkhradikalnye formatsii”, Dokl. NAN Belarusi, 44:5 (2000), 24–26 | MR

[4] V. N. Semenchuk, O. A. Mokeeva, “O probleme klassifikatsii sverkhradikalnykh formatsii”, Izv. vuzov. Matematika, 2008, no. 12, 70–75 | MR | Zbl

[5] Shemetkov L. A., Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp. | MR | Zbl

[6] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992, 891 pp. | MR

[7] S. F. Kamornikov, M. V. Selkin, Podgruppovye funktory i klassy konechnykh grupp, Belaruskaya navuka, Minsk, 2003, 256 pp.

[8] D. Gorenstein, Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, M., 1985, 352 pp. | MR | Zbl

[9] M. W. Liebeck, C. E. Prager, J. Saxl, The maximal factorizations of the finite simple groups and their automorphism groups, Memoirs of the Amer. Math. Soc., 86, no. 432, 1990, 150 pp. | MR

[10] J. H. Conway et al., Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[11] H. H. Mitchell, “Determination of the ordinary and modular ternary linear groups”, Trans. Amer. Math. Soc., 12 (1911), 207–242 | DOI | MR | Zbl

[12] R. W. Hartley, “Determination of the ternary collineation groups whose coefficient lie in $GF(2^n)$”, Ann. Math., 25:2 (1925), 140–158 | DOI | MR

[13] M. Suzuki, “On a class double transitive groups”, Ann. Math., 75:1 (1962), 105–145 | DOI | MR | Zbl

[14] M. W. Liebeck, J. Saxl, “On the orders of maximal subgroups of the finite exceptional groups of Lie type”, Proc. London Math. Soc., 55 (1987), 299–330 | DOI | MR | Zbl

[15] P. Kleidman, “The maximal subgroups of the Chevalley group $G_2(q)$ with $q$ odd, the Ree groups $^2G_2(q)$ and their automorphism groups”, J. Algebra, 117 (1988), 30–71 | DOI | MR | Zbl

[16] S. A. Syskin, “Ob odnom voprose R. Bera”, Sib. mat. zhurnal, 20:3 (1979), 679–681 | MR | Zbl

[17] K. Zsigmondy, “Zur Theorie der Potenzreste”, Monath. Math. Phis., 3 (1892), 265–284 | DOI | MR | Zbl