Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2013_2_a8, author = {E. V. Gubkina and K. V. Zabello and M. A. Prokhorovich and Ya. M. Radyna}, title = {The {Luzin} approximation of functions from sobolev classes on the space of~a~multidimensional $p$-adic argument}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {58--65}, publisher = {mathdoc}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2013_2_a8/} }
TY - JOUR AU - E. V. Gubkina AU - K. V. Zabello AU - M. A. Prokhorovich AU - Ya. M. Radyna TI - The Luzin approximation of functions from sobolev classes on the space of~a~multidimensional $p$-adic argument JO - Problemy fiziki, matematiki i tehniki PY - 2013 SP - 58 EP - 65 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2013_2_a8/ LA - ru ID - PFMT_2013_2_a8 ER -
%0 Journal Article %A E. V. Gubkina %A K. V. Zabello %A M. A. Prokhorovich %A Ya. M. Radyna %T The Luzin approximation of functions from sobolev classes on the space of~a~multidimensional $p$-adic argument %J Problemy fiziki, matematiki i tehniki %D 2013 %P 58-65 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2013_2_a8/ %G ru %F PFMT_2013_2_a8
E. V. Gubkina; K. V. Zabello; M. A. Prokhorovich; Ya. M. Radyna. The Luzin approximation of functions from sobolev classes on the space of~a~multidimensional $p$-adic argument. Problemy fiziki, matematiki i tehniki, no. 2 (2013), pp. 58-65. http://geodesic.mathdoc.fr/item/PFMT_2013_2_a8/
[1] V. G. Krotov, M. A. Prokhorovich, “Approksimatsiya Luzina funktsii iz klassov $W_\alpha^p$ na metricheskikh prostranstvakh s meroi”, Izvestiya vuzov. Matematika, 2008, no. 5, 55–66 | MR | Zbl
[2] E. V. Gubkina i dr., “Approksimatsiya Luzina funktsii iz klassov Soboleva na prostranstve $p$-adicheskikh vektorov”, Doklady NAN Belarusi, 56:3 (2012), 16–18
[3] R. R. Coifman, G. Weiss, Analyse harmonique non-commutative sur certain espaces homogenes, Lecture Notes in Mathematics, 242, Springer-Verlag, New York–Berlin–Heidelberg, 1971, 160 pp. | MR | Zbl
[4] A. P. Calderón, “Estimates for singular integral operators in terms of maximal functions”, Studia Mathematica, 44 (1972), 561–582 | MR
[5] A. P. Calderón, R. Scott, “Sobolev type inequalities for $p>0$”, Studia Mathematica, 62 (1978), 75–92 | MR | Zbl
[6] J. Hu, “A note on Hajłasz–Sobolev spaces on fractals”, Journal of mathematical analysis and applications, 280:1 (2003), 91–101 | DOI | MR | Zbl
[7] D. Yang, “New characterization of Hajłasz–Sobolev spaces on metric spaces”, Science in China (series A), 46:5 (2003), 675–689 | DOI | MR | Zbl
[8] J. Kinnunen, O. Martio, “The Sobolev capacity on metric spaces”, Annales Academiæ Scientiarum FennicæMathematica, 21 (1996), 367–382 | MR | Zbl
[9] M. A. Prokhorovich, “Emkosti i tochki Lebega dlya drobnykh klassov Khailasha–Soboleva na metricheskikh prostranstvakh s meroi”, Izvestiya NAN Belarusi. Seriya fiziko-matematicheskikh nauk, 2006, no. 1, 19–23 | MR
[10] M. A. Prokhorovich, “Sobolevskie emkosti na metricheskikh prostranstvakh s meroi”, Vestnik BGU. Seriya 1: Fizika, Matematika, Informatika, 2007, no. 3, 106–111 | MR | Zbl
[11] P. Hajłasz, “Sobolev spaces on an arbitrary metric spaces”, Potential Analysis, 5:4 (1996), 403–415 | MR | Zbl
[12] I. A. Ivanishko, “Obobschennye klassy Soboleva na metricheskikh prostranstvakh s meroi”, Matematicheskie zametki, 77:6 (2005), 937–940 | DOI | MR
[13] P. Hajłasz, J. Kinnunen, “Hölder qasicontinuity of Sobolev functions on metric spaces”, Revista Matemática Iberoamericana, 14:3 (1998), 601–622 | MR | Zbl
[14] A. Jonsson, “Haar wavelets of higher order on fractals and regularity of functions”, Journal of mathematical analysis and applications, 290:1 (2004), 86–104 | DOI | MR | Zbl
[15] W. Schikhof, Ultrametric calculus. An introduction to $p$-adic analysis, Cambridge University Press, Cambridge, 1984, 306 pp. | MR | Zbl
[16] J. Kinnunen, V. Latvala, “Lebesgue points for Sobolev functions on metric spaces”, Revista Matemática Iberoamericana, 18:3 (2002), 685–700 | DOI | MR | Zbl
[17] M. A. Prokhorovich, “Razmernost Khausdorfa mnozhestva Lebega dlya klassov $W_\alpha^p$ na metricheskikh prostranstvakh”, Matematicheskie zametki, 82:1 (2007), 99–107 | DOI | MR | Zbl
[18] D. N. Oleshkevich, M. A. Prokhorovich, “Tochki Lebega dlya funktsii iz klassov Soboleva na prostranstve $p$-adicheskikh chisel”, Vestnik BrGU. Seriya 4: Fizika, Matematika, 2010, no. 2, 103–110
[19] M. A. Prokhorovich, “Mery Khausdorfa i tochki Lebega dlya klassov Soboleva $W_\alpha^p$, $\alpha>0$, na prostranstvakh odnorodnogo tipa”, Matematicheskie zametki, 85:4 (2009), 616–621 | DOI | MR | Zbl
[20] D. N. Oleshkevich, Prostranstva funktsii eksponentsialnogo tipa i sobolevskie prostranstva funktsii $p$-adicheskogo argumenta, Dis. ... kand. fiz.-mat. nauk: 01.01.01, Minsk, 2011, 102 pp.