The Luzin approximation of functions from sobolev classes on the space of~a~multidimensional $p$-adic argument
Problemy fiziki, matematiki i tehniki, no. 2 (2013), pp. 58-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we will prove an analog of the Luzin theorem on correction for spaces of Sobolev type over $p$-adic vectors. The results were announced in «Doklady of the National Academy of Sciences of Belarus».
Keywords: space of $p$-adic vectors, Luzin approximation.
Mots-clés : Sobolev spaces
@article{PFMT_2013_2_a8,
     author = {E. V. Gubkina and K. V. Zabello and M. A. Prokhorovich and Ya. M. Radyna},
     title = {The {Luzin} approximation of functions from sobolev classes on the space of~a~multidimensional $p$-adic argument},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {58--65},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2013_2_a8/}
}
TY  - JOUR
AU  - E. V. Gubkina
AU  - K. V. Zabello
AU  - M. A. Prokhorovich
AU  - Ya. M. Radyna
TI  - The Luzin approximation of functions from sobolev classes on the space of~a~multidimensional $p$-adic argument
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2013
SP  - 58
EP  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2013_2_a8/
LA  - ru
ID  - PFMT_2013_2_a8
ER  - 
%0 Journal Article
%A E. V. Gubkina
%A K. V. Zabello
%A M. A. Prokhorovich
%A Ya. M. Radyna
%T The Luzin approximation of functions from sobolev classes on the space of~a~multidimensional $p$-adic argument
%J Problemy fiziki, matematiki i tehniki
%D 2013
%P 58-65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2013_2_a8/
%G ru
%F PFMT_2013_2_a8
E. V. Gubkina; K. V. Zabello; M. A. Prokhorovich; Ya. M. Radyna. The Luzin approximation of functions from sobolev classes on the space of~a~multidimensional $p$-adic argument. Problemy fiziki, matematiki i tehniki, no. 2 (2013), pp. 58-65. http://geodesic.mathdoc.fr/item/PFMT_2013_2_a8/

[1] V. G. Krotov, M. A. Prokhorovich, “Approksimatsiya Luzina funktsii iz klassov $W_\alpha^p$ na metricheskikh prostranstvakh s meroi”, Izvestiya vuzov. Matematika, 2008, no. 5, 55–66 | MR | Zbl

[2] E. V. Gubkina i dr., “Approksimatsiya Luzina funktsii iz klassov Soboleva na prostranstve $p$-adicheskikh vektorov”, Doklady NAN Belarusi, 56:3 (2012), 16–18

[3] R. R. Coifman, G. Weiss, Analyse harmonique non-commutative sur certain espaces homogenes, Lecture Notes in Mathematics, 242, Springer-Verlag, New York–Berlin–Heidelberg, 1971, 160 pp. | MR | Zbl

[4] A. P. Calderón, “Estimates for singular integral operators in terms of maximal functions”, Studia Mathematica, 44 (1972), 561–582 | MR

[5] A. P. Calderón, R. Scott, “Sobolev type inequalities for $p>0$”, Studia Mathematica, 62 (1978), 75–92 | MR | Zbl

[6] J. Hu, “A note on Hajłasz–Sobolev spaces on fractals”, Journal of mathematical analysis and applications, 280:1 (2003), 91–101 | DOI | MR | Zbl

[7] D. Yang, “New characterization of Hajłasz–Sobolev spaces on metric spaces”, Science in China (series A), 46:5 (2003), 675–689 | DOI | MR | Zbl

[8] J. Kinnunen, O. Martio, “The Sobolev capacity on metric spaces”, Annales Academiæ Scientiarum FennicæMathematica, 21 (1996), 367–382 | MR | Zbl

[9] M. A. Prokhorovich, “Emkosti i tochki Lebega dlya drobnykh klassov Khailasha–Soboleva na metricheskikh prostranstvakh s meroi”, Izvestiya NAN Belarusi. Seriya fiziko-matematicheskikh nauk, 2006, no. 1, 19–23 | MR

[10] M. A. Prokhorovich, “Sobolevskie emkosti na metricheskikh prostranstvakh s meroi”, Vestnik BGU. Seriya 1: Fizika, Matematika, Informatika, 2007, no. 3, 106–111 | MR | Zbl

[11] P. Hajłasz, “Sobolev spaces on an arbitrary metric spaces”, Potential Analysis, 5:4 (1996), 403–415 | MR | Zbl

[12] I. A. Ivanishko, “Obobschennye klassy Soboleva na metricheskikh prostranstvakh s meroi”, Matematicheskie zametki, 77:6 (2005), 937–940 | DOI | MR

[13] P. Hajłasz, J. Kinnunen, “Hölder qasicontinuity of Sobolev functions on metric spaces”, Revista Matemática Iberoamericana, 14:3 (1998), 601–622 | MR | Zbl

[14] A. Jonsson, “Haar wavelets of higher order on fractals and regularity of functions”, Journal of mathematical analysis and applications, 290:1 (2004), 86–104 | DOI | MR | Zbl

[15] W. Schikhof, Ultrametric calculus. An introduction to $p$-adic analysis, Cambridge University Press, Cambridge, 1984, 306 pp. | MR | Zbl

[16] J. Kinnunen, V. Latvala, “Lebesgue points for Sobolev functions on metric spaces”, Revista Matemática Iberoamericana, 18:3 (2002), 685–700 | DOI | MR | Zbl

[17] M. A. Prokhorovich, “Razmernost Khausdorfa mnozhestva Lebega dlya klassov $W_\alpha^p$ na metricheskikh prostranstvakh”, Matematicheskie zametki, 82:1 (2007), 99–107 | DOI | MR | Zbl

[18] D. N. Oleshkevich, M. A. Prokhorovich, “Tochki Lebega dlya funktsii iz klassov Soboleva na prostranstve $p$-adicheskikh chisel”, Vestnik BrGU. Seriya 4: Fizika, Matematika, 2010, no. 2, 103–110

[19] M. A. Prokhorovich, “Mery Khausdorfa i tochki Lebega dlya klassov Soboleva $W_\alpha^p$, $\alpha>0$, na prostranstvakh odnorodnogo tipa”, Matematicheskie zametki, 85:4 (2009), 616–621 | DOI | MR | Zbl

[20] D. N. Oleshkevich, Prostranstva funktsii eksponentsialnogo tipa i sobolevskie prostranstva funktsii $p$-adicheskogo argumenta, Dis. ... kand. fiz.-mat. nauk: 01.01.01, Minsk, 2011, 102 pp.