Ellipsometry of the transitive layers semiconductor--dielectric
Problemy fiziki, matematiki i tehniki, no. 2 (2013), pp. 18-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

The polarizability bound of the layer with its optical thickness is established for thin oxide surfaces on a silicon substrate. It is revealed that the structure of the inhomogeneous surface layer can be interpreted by a five-layer model with 11 parameters at the heat treatment of the silicon plates.
Keywords: ellipsometry, optical model, transition layer, rough and optically inhomogeneous layers, polarizability.
@article{PFMT_2013_2_a2,
     author = {N. I. Stas{\textquoteright}kov and I. V. Ivashkevich and N. A. Krekoten},
     title = {Ellipsometry of the transitive layers semiconductor--dielectric},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {18--24},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2013_2_a2/}
}
TY  - JOUR
AU  - N. I. Stas’kov
AU  - I. V. Ivashkevich
AU  - N. A. Krekoten
TI  - Ellipsometry of the transitive layers semiconductor--dielectric
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2013
SP  - 18
EP  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2013_2_a2/
LA  - ru
ID  - PFMT_2013_2_a2
ER  - 
%0 Journal Article
%A N. I. Stas’kov
%A I. V. Ivashkevich
%A N. A. Krekoten
%T Ellipsometry of the transitive layers semiconductor--dielectric
%J Problemy fiziki, matematiki i tehniki
%D 2013
%P 18-24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2013_2_a2/
%G ru
%F PFMT_2013_2_a2
N. I. Stas’kov; I. V. Ivashkevich; N. A. Krekoten. Ellipsometry of the transitive layers semiconductor--dielectric. Problemy fiziki, matematiki i tehniki, no. 2 (2013), pp. 18-24. http://geodesic.mathdoc.fr/item/PFMT_2013_2_a2/

[1] V. A. Gritsenko, “Struktura granits razdela kremnii/oksid i nitrid/oksid”, Uspekhi fizicheskikh nauk, 179:9 (2009), 921–930 | DOI

[2] A. I. Belyaeva, A. A. Galuza, S. N. Kolomiets, “Granitsy razdela sloev i sherokhovatost v mnogosloinoi kremnievoi strukture”, Fizika i tekhnika poluprovodnikov, 38:9 (2004), 1050–1055

[3] R. Azzam, N. Bashara, Ellipsometriya i polyarizovannyi svet, perevod s angl., eds. A. V. Rzhanov, K. K. Svitashev, Izd-vo «Mir», M., 1981, 582 pp.

[4] V. I. Pshenitsyn, M. I. Abaev, N. Yu. Lyzlov, Ellipsometriya v fiziko-khimicheskikh issledovaniyakh, Izd-vo «Khimiya», L., 1986, 152 pp.

[5] A. N. Tikhonov, V. Ya. Arsenin, Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 285 pp. | MR

[6] N. I. Staskov i dr., “Uchet vliyaniya estestvennogo poverkhnostnogo sloya pri issledovanii kremnievykh plastin metodom spektralnoi ellipsometrii”, Problemy fiziki, matematiki i tekhniki, 2012, no. 1 (10), 26–30

[7] N. I. Staskov, I. V. Ivashkevich, “Modelirovanie perekhodnykh sloev v strukture poluprovodnik–dielektrik–poluprovodnik”, Optika neodnorodnykh struktur, Mater. III mezhdunar. nauchno-prakt. konf., ed. V. A. Karpenko, MGU im. A. A. Kuleshova, Mogilev, 2011, 92–94

[8] V. I. Kovalev i dr., “Spektralnaya ellipsometriya mnogosloinykh geterostruktur $\mathrm{ZnS/ZnSe}$”, Zhurnal prikladnoi spektroskopii, 69:2 (2002), 258–263 | MR