Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2013_1_a4, author = {V. B. Zalesski and V. M. Kravchenko and T. R. Leonova and {\CYRA}. {\CYRM}. Polikanin and E. P. Zaretskaya and S. G. Petrosyan and A. M. Kechiantz}, title = {CIGS solar cells with efficiency 10,1\%\ on perlite galssceramic substrates}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {27--32}, publisher = {mathdoc}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2013_1_a4/} }
TY - JOUR AU - V. B. Zalesski AU - V. M. Kravchenko AU - T. R. Leonova AU - А. М. Polikanin AU - E. P. Zaretskaya AU - S. G. Petrosyan AU - A. M. Kechiantz TI - CIGS solar cells with efficiency 10,1\%\ on perlite galssceramic substrates JO - Problemy fiziki, matematiki i tehniki PY - 2013 SP - 27 EP - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2013_1_a4/ LA - ru ID - PFMT_2013_1_a4 ER -
%0 Journal Article %A V. B. Zalesski %A V. M. Kravchenko %A T. R. Leonova %A А. М. Polikanin %A E. P. Zaretskaya %A S. G. Petrosyan %A A. M. Kechiantz %T CIGS solar cells with efficiency 10,1\%\ on perlite galssceramic substrates %J Problemy fiziki, matematiki i tehniki %D 2013 %P 27-32 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2013_1_a4/ %G ru %F PFMT_2013_1_a4
V. B. Zalesski; V. M. Kravchenko; T. R. Leonova; А. М. Polikanin; E. P. Zaretskaya; S. G. Petrosyan; A. M. Kechiantz. CIGS solar cells with efficiency 10,1\%\ on perlite galssceramic substrates. Problemy fiziki, matematiki i tehniki, no. 1 (2013), pp. 27-32. http://geodesic.mathdoc.fr/item/PFMT_2013_1_a4/
[1] U. Rau, U. W. Schock, “$\mathrm{CuInGaSe}_2$ Solar cells”, Clean Electricity From Photovoltaics, eds. M. D. Archer, R. Hill, Imperial College Press, London, UK, 2001, 277
[2] W. N. Shafarman, L. Stolt, $\mathrm{Cu(InGa)Se}_2$ Solar Cells, Handbook of Photovoltaic Science and Engineering, eds. A. Lique, S. Hegedus, John Wiley Ltd., 2003
[3] D. Iencinella, E. Centurioni, G. Busana, “Thin-film solar cells on commercial ceramic tiles”, Sol. Energy Mater. Sol. Cells, 93 (2009), 206–210
[4] A. Slaoui, E. Pihan, A. Focsa, “Thin-film silicon solar cells on mullite substrates”, Sol. Energy Mater. Sol. Cells, 90 (2006), 1542–1552
[5] H. Li et al., “Influence of Deposition Processing Conditions on Polycrystalline Silicon Thin Film for Solar Cells on Ceramic Substrates”, Materials Science Forum, 475–479 (2005), 1231–1234
[6] Kieliba T. et al., “Crystalline silicon thin-film solar cells on $\mathrm{ZrSiO}_4$ ceramic substrates”, Technical Digest of the 12$^{th}$ International Photovoltaic Science and Engineering Conference (Cheju Island, Korea, 2001), 557 pp.
[7] L. Carnel et al., “Thin-film polycrystalline silicon solar cells on ceramic substrates with a $V_{oc}$ above 500 mV”, Thin Solid Films, 511–512 (2006), 21–25
[8] G. Stollwerck, S. Reber, C. Häßler, “Crystalline Silicon Thin-Film Solar Cells on Silicon Nitride Ceramic Substrates”, Adv. Mater., 13 (2001), 1820–1824
[9] S. Janz et al., “Processing of C-SI Thin-Film Solar Cell on Ceramic Substrate with Conductive SIC Diffusion Barrier Layer”, Proceedings of Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference (Waikoloa, HI, 7–12 May 2006), v. 2, 1403–1406
[10] K. Taretto, U. Rau, J. Werner, “Numerical simulation of grain boundary effects in $\mathrm{Cu(In,Ga)Se}_2$ thin-film solar cell”, Thin Solid Films, 480–481 (2005), 8–12
[11] J. Luck et al., “Influence of Na on the properties of Curich prepared $\mathrm{CuInS}_2$ thin films and the performance of corresponding $\mathrm{CuInS_2/CdS/ZnO}$ solar cells”, Sol. Energy Mater. Sol. Cells, 67 (2001), 151–158
[12] P. S. Vaseker, N. G. Dhere, “Effect of sodium addition on $\mathrm{Cu}$-deficient $\mathrm{CuIn_{1-x}Ga_xS_2}$ thin film solar cells”, Sol. Energy Mat. Sol. Cells, 93 (2009), 69–73
[13] P. H. Mauk, H. Tavakolian, J. R. Sites, “Interpretation of thin-film polycrystalline solar cell capacitance”, IEEE Trans. Electron Devices, 37 (1990), 422–427