Relativistic bound state problem for two-particle systems with energy dependent one boson exchange potential
Problemy fiziki, matematiki i tehniki, no. 1 (2013), pp. 24-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical solutions of quantum field theory equations describing bound s-states of two scalar particles with equal masses are found in the case of one-boson exchange potential dependent on the system energy. The mass of the scalar exchange boson is chosen to be equal to zero. The constants of scalar particle-antiparticle system decay into two photons are calculated based on obtained solutions.
Keywords: relativistic two-particle equations, one-boson exchange potential, wave functions, bound states, normalization condition, energy eigenvalues, decay constant.
@article{PFMT_2013_1_a3,
     author = {Yu. A. Grishechkin and V. N. Kapshai},
     title = {Relativistic bound state problem for two-particle systems with energy dependent one boson exchange potential},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {24--26},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2013_1_a3/}
}
TY  - JOUR
AU  - Yu. A. Grishechkin
AU  - V. N. Kapshai
TI  - Relativistic bound state problem for two-particle systems with energy dependent one boson exchange potential
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2013
SP  - 24
EP  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2013_1_a3/
LA  - en
ID  - PFMT_2013_1_a3
ER  - 
%0 Journal Article
%A Yu. A. Grishechkin
%A V. N. Kapshai
%T Relativistic bound state problem for two-particle systems with energy dependent one boson exchange potential
%J Problemy fiziki, matematiki i tehniki
%D 2013
%P 24-26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2013_1_a3/
%G en
%F PFMT_2013_1_a3
Yu. A. Grishechkin; V. N. Kapshai. Relativistic bound state problem for two-particle systems with energy dependent one boson exchange potential. Problemy fiziki, matematiki i tehniki, no. 1 (2013), pp. 24-26. http://geodesic.mathdoc.fr/item/PFMT_2013_1_a3/

[1] V. G. Kadyshevsky, “Quasipotential type equation for the relativistic scattering amplitude”, Nucl. Phys. B, 6:1 (1968), 125–148

[2] V. N. Kapshai, V. I. Savrin, N. B. Skachkov, “O zavisimosti kvazipotentsiala ot polnoi energii dvukhchastichnoi sistemy”, TMF, 69:3 (1986), 400–410 | MR

[3] E. A. Dey, V. N. Kapshai, G. Yu. Tyumenkov, “One-Photon Exchange Quasipotentials of Two-Body Systems”, Acta Physica Polonica B, 21:6 (1990), 449–456

[4] A. A. Logunov, A. N. Tavkhelidze, “Quasi-Optical Approach in Quantum Field Theory”, Nuovo Cimento, 29:2 (1963), 380–399 | MR

[5] R. N. Faustov, “Kvazipotentsialnyi metod v zadache o svyazannykh sostoyaniyakh”, TMF, 3:2 (1970), 240–254

[6] T. M. Solov'eva, E. P. Zhidkov, “Iteration method of solving the integral equation with nonlinear dependence on spectral parameter”, Comp. Phys. Comm., 126 (2000), 168–177 | MR

[7] H. H. Kalitkin, Chislennye metody, BKhV-Peterburg, Sankt-Peterburg, 2011, 592 pp.

[8] V. N. Kapshai, Yu. A. Grishechkin, “Form-factors of relativistic bound state systems of two scalar particles with one-boson exchange potential”, Proceedings of the F. Scorina Gomel State University, 2011, no. 6 (69), 70–74

[9] A. Messiya, Kvantovaya mekhanika, v 2 t., v. 1, Kvantovaya mekhanika, Nauka, M., 1978, 480 pp.

[10] V. I. Savrin, Metod kvazipotentsiala v teorii svyazannykh sostoyanii, Izdatelstvo «Samarskii universitet», Samara, 2006, 134 pp.