On partially conjugate-permutable subgroups of finite groups
Problemy fiziki, matematiki i tehniki, no. 1 (2013), pp. 74-78

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a subgroup of a group $G$. We shall call a subgroup $H$ of $G$ the $R$-conjugate-permutable subgroup if $HH^r=H^rH$ for all $r\in R$. In this work the properties and the influence of $R$-conjugate-permutable subgroups (maximal, Sylow, cyclic primary) on the structure of finite groups are studied. As $R$ we consider the Fitting subgroup $F(G)$, quasinilpotent radical $F^*(G)$ and the generalized Fitting subgroup $\tilde{F}(G)$ that was introduced by P. Shmid. In particular, it was shown that group $G$ is nilpotent iff all its maximal subgroups are $\tilde{F}(G)$-conjugate-permutable.
Keywords: finite group, nilpotent group, $R$-conjugate-permutable subgroup, conjugate-permutable subgroup, the Fitting subgroup.
@article{PFMT_2013_1_a12,
     author = {V. I. Murashko},
     title = {On partially conjugate-permutable subgroups of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {74--78},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2013_1_a12/}
}
TY  - JOUR
AU  - V. I. Murashko
TI  - On partially conjugate-permutable subgroups of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2013
SP  - 74
EP  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2013_1_a12/
LA  - en
ID  - PFMT_2013_1_a12
ER  - 
%0 Journal Article
%A V. I. Murashko
%T On partially conjugate-permutable subgroups of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2013
%P 74-78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2013_1_a12/
%G en
%F PFMT_2013_1_a12
V. I. Murashko. On partially conjugate-permutable subgroups of finite groups. Problemy fiziki, matematiki i tehniki, no. 1 (2013), pp. 74-78. http://geodesic.mathdoc.fr/item/PFMT_2013_1_a12/