On partially conjugate-permutable subgroups of finite groups
Problemy fiziki, matematiki i tehniki, no. 1 (2013), pp. 74-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a subgroup of a group $G$. We shall call a subgroup $H$ of $G$ the $R$-conjugate-permutable subgroup if $HH^r=H^rH$ for all $r\in R$. In this work the properties and the influence of $R$-conjugate-permutable subgroups (maximal, Sylow, cyclic primary) on the structure of finite groups are studied. As $R$ we consider the Fitting subgroup $F(G)$, quasinilpotent radical $F^*(G)$ and the generalized Fitting subgroup $\tilde{F}(G)$ that was introduced by P. Shmid. In particular, it was shown that group $G$ is nilpotent iff all its maximal subgroups are $\tilde{F}(G)$-conjugate-permutable.
Keywords: finite group, nilpotent group, $R$-conjugate-permutable subgroup, conjugate-permutable subgroup, the Fitting subgroup.
@article{PFMT_2013_1_a12,
     author = {V. I. Murashko},
     title = {On partially conjugate-permutable subgroups of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {74--78},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2013_1_a12/}
}
TY  - JOUR
AU  - V. I. Murashko
TI  - On partially conjugate-permutable subgroups of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2013
SP  - 74
EP  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2013_1_a12/
LA  - en
ID  - PFMT_2013_1_a12
ER  - 
%0 Journal Article
%A V. I. Murashko
%T On partially conjugate-permutable subgroups of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2013
%P 74-78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2013_1_a12/
%G en
%F PFMT_2013_1_a12
V. I. Murashko. On partially conjugate-permutable subgroups of finite groups. Problemy fiziki, matematiki i tehniki, no. 1 (2013), pp. 74-78. http://geodesic.mathdoc.fr/item/PFMT_2013_1_a12/

[1] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992, 891 pp. | MR

[2] O. Ore, “Contributions in the theory of groups of finite order”, J. Duke Math., 5 (1939), 431–460 | MR

[3] O. U. Kegel, “Sylow-Gruppen and Subnormalteiler endlicher Gruppen”, Math. Z., 78 (1962), 205–221 | MR | Zbl

[4] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, Walter de Gruyter, 2010, 348 pp. | MR | Zbl

[5] T. Foguel, “Conjugate-Permutable Subgroups”, J. Algebra, 191 (1997), 235–239 | MR | Zbl

[6] L. A. Shemetkov, Formations of finite groups, Nauka, Moscow, 1978, 272 pp. (In Russian) | MR | Zbl

[7] B. Huppert, N. Blacburn, Finite groups, v. III, Springer, Berlin–Heidelberg–New York, 1982, 454 pp.

[8] P. Shmid, “Uber die Automorphismengruppen endlicher Gruppen”, Arch. Math., 23:3 (1972), 236–242 | MR

[9] A. F. Vasil'ev, T. I. Vasil'eva, A. V. Syrokvashin, “A Note on Intersections of Some Maximal Subgroups of Finite Groups”, Problems of physics, mathematics and technics, 2012, no. 2 (11), 62–64 (In Russian)

[10] R. L. Griss, P. Schmid, “The Frattini module”, Arch. Math., 30 (1978), 256–266 | MR

[11] R. Baer, “Group elements of prime power index”, Trans. Amer. Math. Soc., 75 (1953), 20–47 | MR | Zbl