Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2013_1_a10, author = {D. V. Gritsuk and V. S. Monakhov and O. A. Shpyrko}, title = {On finite $\pi$-solvable groups with bicyclic {Sylow} subgroups}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {61--66}, publisher = {mathdoc}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2013_1_a10/} }
TY - JOUR AU - D. V. Gritsuk AU - V. S. Monakhov AU - O. A. Shpyrko TI - On finite $\pi$-solvable groups with bicyclic Sylow subgroups JO - Problemy fiziki, matematiki i tehniki PY - 2013 SP - 61 EP - 66 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2013_1_a10/ LA - ru ID - PFMT_2013_1_a10 ER -
D. V. Gritsuk; V. S. Monakhov; O. A. Shpyrko. On finite $\pi$-solvable groups with bicyclic Sylow subgroups. Problemy fiziki, matematiki i tehniki, no. 1 (2013), pp. 61-66. http://geodesic.mathdoc.fr/item/PFMT_2013_1_a10/
[1] V. S. Monakhov, Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006, 207 pp.
[2] B. Huppert, Endliche Gruppen, v. I, Berlin–Heidelberg–New York, 1967 | Zbl
[3] V. S. Monakhov, E. E. Gribovskaya, “O maksimalnykh i silovskikh podgruppakh konechnykh razreshimykh grupp”, Matematicheskie zametki, 70:4 (2001), 603–612 | MR | Zbl
[4] V. S. Monakhov, A. A. Trofimuk, “On a Finite Group Having a Normal Series Whose Factors Have Bicyclic Sylow Subgroups”, Communications in Algebra, 39:9 (2011), 3178–3186 | MR | Zbl
[5] P. Hall, G. Higman, “The $p$-lengh of a $p$-soluble groups and reduction theorems for Burnside's problem”, Proc. London Math. Soc., 3:7 (1956), 1–42 | MR | Zbl
[6] A. Ballester-Bolinches, R. Estaban-Romero, M. Asaad, Products finite groups, De Gruyter Expositions in Mathematics, 2010, 53 pp.
[7] V. S. Monakhov, O. A. Shpyrko, “O nilpotentnoi $\pi$-dline konechnoi $\pi$-razreshimoi gruppy”, Diskretnaya matematika, 13:3 (2001), 145–152 | MR | Zbl