Jones 4-spinors for the partially polarized light
Problemy fiziki, matematiki i tehniki, no. 1 (2013), pp. 13-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

The known group-theory based description of constructing of 4-tensors based on the second rank 4-spinor permits to introduce definition for Jones 4-spinor of a partially polarized light and relates this object with Stokes 4-vector and Stokes antisymmetric 4-tensor. It provides us with extension of the known attitude to the problem when only Jones 2-spinors relevant to a completely polarized light are used.
Keywords: polarization optics, Jones 4-spinors, Stokes parameters.
@article{PFMT_2013_1_a1,
     author = {O. V. Veko and E. M. Ovsiyuk and V. M. Red'kov},
     title = {Jones 4-spinors for the partially polarized light},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {13--18},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2013_1_a1/}
}
TY  - JOUR
AU  - O. V. Veko
AU  - E. M. Ovsiyuk
AU  - V. M. Red'kov
TI  - Jones 4-spinors for the partially polarized light
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2013
SP  - 13
EP  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2013_1_a1/
LA  - ru
ID  - PFMT_2013_1_a1
ER  - 
%0 Journal Article
%A O. V. Veko
%A E. M. Ovsiyuk
%A V. M. Red'kov
%T Jones 4-spinors for the partially polarized light
%J Problemy fiziki, matematiki i tehniki
%D 2013
%P 13-18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2013_1_a1/
%G ru
%F PFMT_2013_1_a1
O. V. Veko; E. M. Ovsiyuk; V. M. Red'kov. Jones 4-spinors for the partially polarized light. Problemy fiziki, matematiki i tehniki, no. 1 (2013), pp. 13-18. http://geodesic.mathdoc.fr/item/PFMT_2013_1_a1/

[1] V. N. Snopko, Polyarizatsionnye kharakteristiki opticheskogo izlucheniya i metody ikh izmereniya, Nauka i tekhnika, Minsk, 1992, 334 pp.

[2] P. I. Lamekin, “Intrinsic polarization states of corner reflectors”, Sov. J. Opt. Tech., 54 (1987), 658–661

[3] P. I. Lamekin, “Neobkhodimye i dostatochnye usloviya nedepolyarizuemosti opticheskikh sistem”, Optika i spektroskopiya, 81:1 (1996), 164–168

[4] P. I. Lamekin, “Preobrazovanie stepeni polyarizatsii izlucheniya opticheskimi sistemami”, Opticheskii zhurnal, 1997, no. 6, 50–55

[5] P. I. Lamekin, “Polar forms of Mueller matrices of nondepolarizing optical systems”, Optics and Spectroscopy, 88:5 (2000), 737–742

[6] P. I. Lamekin, “Polarization Eigenstates of Nondepolarizing Optical Systems”, Optics and Spectroscopy, 91:5 (2001), 741–748

[7] P. I. Lamekin, Yu. V. Sivaev, K. G. Predko, “Formalism of Mueller matrices and its application to calculation of phase-shifting devices”, Optics of Crystals, Proceedings of SPIE, 4358, eds. V. V. Shepelevich, N. N. Egorov, 2000, 289–293

[8] P. I. Lamekin, “Mueller matrices of nondepolarizing optical systems: the theory and a new method of determination”, Optics of Crystals, Proceedings of SPIE, 4358, eds. V. V. Shepelevich, N. N. Egorov, 2000, 294–302

[9] P. I. Lamekin, “Kratnye sobstvennye znacheniya i sobstvennye sostoyaniya polyarizatsii matrits Myullera chastichnykh polyarizatorov”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2001, no. 5 (8), 128–132

[10] F. I. Fedorov, Gruppa Lorentsa, Nauka, M., 1979, 384 pp. | MR

[11] A. V. Berezin, Yu. A. Kurochkin, E. A. Tolkachev, Kvaterniony v relyativistskoi fizike, Nauka i tekhnika, Minsk, 1989, 211 pp. | MR | Zbl

[12] A. A. Bogush, V. M. Red'kov, “On Unique Parametrization of the Linear Group and Its Subgroups by Using the Dirac Algebra Basis”, NPCS, 11:1 (2008), 1–24 | MR

[13] A. A. Bogush i dr., “Bikvateriony i matritsy Myullera”, Doklady NAN Belarusi, 51:5 (2007), 71–76 | Zbl

[14] A. A. Bogush, “Matritsy Myullera v polyarizatsionnoi optike”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2008, no. 2, 96–102

[15] V. M. Red'kov, “Lorentz group and polarization of the light”, Advances in Applied Clifford Algebras, 21 (2011), 203–220 | MR

[16] E. M. Ovsiyuk, “Tranzitivnost v teorii gruppy trekhmernykh vraschenii i formalizm Stoksa–Myullera v polyarizatsionnoi optike”, Vesnik Magileŭskaga dzyarzhaŭnaga ŭniversiteta imya A. A. Kulyashova. Seryya V. Pryrodaznaŭchyya navuki: matematyka, fizika, biyalogiya, 2011, no. 1 (37), 69–75

[17] V. M. Redkov, E. M. Ovsiyuk, “Tranzitivnost v teorii gruppy Lorentsa i formalizm Stoksa–Myullera v polyarizatsionnoi optike”, Vesnik Brestskaga ŭniversiteta. Seryya 4. Fizika, matematyka, 2012, no. 1, 18–23

[18] E. M. Ovsiyuk, “O nakhozhdenii parametrov matrits Myullera lorentsevskogo tipa po rezultatam polyarizatsionnykh izmerenii”, Vesnik Magileŭskaga dzyarzhaŭnaga ŭniversiteta imya A. A. Kulyashova. Seryya V. Pryrodaznaŭchyya navuki: matematyka, fizika, biyalogiya, 2012, no. 2 (40), 59–71

[19] E. M. Ovsiyuk, O. V. Veko, V. M. Redkov, “Polugruppy Myullera ranga 1 i 2”, Problemy fiziki, matematiki i tekhniki, 2012, no. 2 (11), 34–40 | Zbl

[20] E. M. Ovsiyuk, V. M. Red'kov, “Degenerate 4-dimensional matrices with semi-group structure and polarization optics”, Vestnik RUDN. Seriya: Matematika, informatika, fizika, 2013, no. 1 | Zbl

[21] V. M. Redkov, Polya chastits v rimanovom prostranstve i gruppa Lorentsa, Belorusskaya nauka, Minsk, 2009, 495 pp.