Microwave circular polarizer based on bifilar helical particles
Problemy fiziki, matematiki i tehniki, no. 1 (2013), pp. 7-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we describe practical realization of a new type of circular polarizer based on metallic double-stranded (ds-) array particles, operating under normal to the helix axis wave propagation. The latter is the key distinction of this array from a number of analogous operating under propagation along the helix axis. Theoretical foundation of ds-helices polarization selectivity is given for a wave propagation perpendicular to the helix’s axis. A computer model is created to study electrodynamic properties of arrays of helices, which confirms the circular polarizer feasibility for a microwave wavelength region.
Keywords: array, polarization, metamaterial.
Mots-clés : helix
@article{PFMT_2013_1_a0,
     author = {A. P. Balmakov and I. V. Semchenko and S. A. Khakhomov and M. Nagatsu},
     title = {Microwave circular polarizer based on bifilar helical particles},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {7--12},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2013_1_a0/}
}
TY  - JOUR
AU  - A. P. Balmakov
AU  - I. V. Semchenko
AU  - S. A. Khakhomov
AU  - M. Nagatsu
TI  - Microwave circular polarizer based on bifilar helical particles
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2013
SP  - 7
EP  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2013_1_a0/
LA  - en
ID  - PFMT_2013_1_a0
ER  - 
%0 Journal Article
%A A. P. Balmakov
%A I. V. Semchenko
%A S. A. Khakhomov
%A M. Nagatsu
%T Microwave circular polarizer based on bifilar helical particles
%J Problemy fiziki, matematiki i tehniki
%D 2013
%P 7-12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2013_1_a0/
%G en
%F PFMT_2013_1_a0
A. P. Balmakov; I. V. Semchenko; S. A. Khakhomov; M. Nagatsu. Microwave circular polarizer based on bifilar helical particles. Problemy fiziki, matematiki i tehniki, no. 1 (2013), pp. 7-12. http://geodesic.mathdoc.fr/item/PFMT_2013_1_a0/

[1] Volakis J. L., Antenna Engineering Handbook, 4th ed., McGraw-Hill Co., 2007

[2] J. K. Gansel et al., “Gold helix photonic metamaterial as broadband circular polarizer”, Science, 325 (2009), 1513–1515

[3] J. K. Gansel et al., “Gold helix photonic metamaterials: a numerical parameter study”, Optics Express, 18 (2010), 1059–1069

[4] Z. Y. Yang et al., “Ultrabroadband optical circular polarizers consisting of double-helical nanowire structures”, Optics Letters, 35 (2010), 2588–2590

[5] S. Li et al., “Broadband terahertz circular polarizers with single- and double-helical array metamaterials”, Journal of the Optical Society of America A, 28 (2011), 19–23

[6] Semchenko I. V., Khakhomov S. A., Balmakov A. P., “Polarization selectivity of electromagnetic radiation of deoxyribonucleic acid”, Journal of Communications Technology and Electronics, 52 (2007), 996–1001

[7] I. V. Semchenko, S. A. Khakhomov, A. P. Balmakov, “Cube Composed of DNA-like Helices Displays Polarization Selectivity Properties in Microwave”, Metamaterials 2009, 3rd International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, London, UK, 2009, 1–3

[8] I. V. Semchenko, S. A. Khakhomov, A. P. Balmakov, “Polarization Selectivity of Artificial Anisotropic Structures Based on DNA-Like Helices”, Crystallography Reports, 55 (2010), 921–926

[9] I. V. Semchenko, S. A. Khakhomov, A. L. Samofalov, “Transformation of the polarization of electromagnetic waves by helical radiators”, Journal of Communications Technology and Electronics, 52 (2007), 850–855

[10] I. V. Semchenko, S. A. Khakhomov, A. L. Samofalov, “Helices of optimal shape for nonreflecting covering”, The European Physical Journal Applied Physics, 49 (2010), 33002

[11] S. A. Khakhomov et al., “Advantages of metamaterials based on double-stranded DNA-like helices”, Metamaterials'2012, The 6th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, Saint Petersburg, 2012, 1–3

[12] M. G. Silveirinha, “Design of Linear-to-Circular Polarization Transformers Made of Long Densely Packed Metallic Helices”, IEEE Transactions on Antennas and Propagation, 56 (2008), 390–401

[13] X. Xiong et al., “Optically nonactive assorted helix array with interchangeable magnetic/electric resonance”, Applied Physics Letters, 98 (2011), 071901

[14] C. Wu et al., “Metallic Helix Array as a Broadband Wave Plate”, Physical Review Letters, 107 (2011), 1–5

[15] A. Serdyukov et al., Electromagnetics of bi-Anisotropic Materials: theory and applications, Gordon and Breach, New York, 2001

[16] L. D. Landau, E. M. Lifshitz, The Classical Theory of Fields, 4th ed., Butterworth-Heinemann, 1980

[17] B. M. Yavorsky, A. A. Detlaf, N. Weinstein, Handbook of Physics, 4th ed., Central Books Ltd., 1973

[18] Balanis C. A., Antenna Theory, 2nd ed., John Wiley and Sons, Inc., 1996

[19] I. V. Semchenko, S. A. Khakhomov, A. P. Balmakov, “Polarization selectivity of electromagnetic radiation of DNA”, Bianisotropics 2006, International Conference on Complex Media and Metamaterials (25–28 September 2006, Samarkand, Uzbekistan), 47–48

[20] I. V. Semchenko, S. A. Khakhomov, A. P. Balmakov, “Vzaimodeistvie iskusstvennykh DNK-podobnykh struktur v SVCh diapazone: polyarizatsionnaya selektivnost otrazheniya voln”, Radiofizika i elektronika, 14 (2009), 103–108

[21] K. K. Seet et al., “Three-dimensional horizontal circular spiral photonic crystals with stop gaps below $1\mu m$”, Applied Physics Letters, 88 (2006), 221101

[22] M. Thiel et al., “Three-dimensional chiral photonic superlattices”, Optics Letters, 35 (2010), 166–168