Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2012_4_a14, author = {O. V. Yakubovich and Y. E. Dudovskaya}, title = {Multiregime queueing network with random staying time of different types of negative customers}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {74--77}, publisher = {mathdoc}, number = {4}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2012_4_a14/} }
TY - JOUR AU - O. V. Yakubovich AU - Y. E. Dudovskaya TI - Multiregime queueing network with random staying time of different types of negative customers JO - Problemy fiziki, matematiki i tehniki PY - 2012 SP - 74 EP - 77 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2012_4_a14/ LA - ru ID - PFMT_2012_4_a14 ER -
%0 Journal Article %A O. V. Yakubovich %A Y. E. Dudovskaya %T Multiregime queueing network with random staying time of different types of negative customers %J Problemy fiziki, matematiki i tehniki %D 2012 %P 74-77 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2012_4_a14/ %G ru %F PFMT_2012_4_a14
O. V. Yakubovich; Y. E. Dudovskaya. Multiregime queueing network with random staying time of different types of negative customers. Problemy fiziki, matematiki i tehniki, no. 4 (2012), pp. 74-77. http://geodesic.mathdoc.fr/item/PFMT_2012_4_a14/
[1] E. Gelenbe, R. Schassberger, “Stability of product-form $G$-networks”, Probab. Eng. and Inf. Sci., 6 (1992), 271–276 | DOI | Zbl
[2] E. Gelenbe, “Product-form networks with negative and positive customers”, J. Appl. Prob., 28 (1991), 656–663 | DOI | MR | Zbl
[3] O. V. Yakubovich, “Ctatsionarnoe raspredelenie seti massovogo obsluzhivaniya s razlichnymi tipami otritsatelnykh i polozhitelnykh zayavok i ogranicheniem na vremya ozhidaniya”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2007, no. 6 (45), 198–202 | MR
[4] Yu. E. Letunovich, “Otkrytye neodnorodnye seti s mnogorezhimnymi strategiyami obsluzhivaniya i ogranicheniem na vremya prebyvaniya”, Materialy mezhdunar. nauch. konf. «Sovremennye matematicheskie metody analiza i optimizatsii informatsionno-telekommunikatsionnykh setei» (Minsk, 26–29 yanvarya 2009 g.), Massovoe obsluzhivanie: potoki, sistemy, seti, 20, eds. A. N. Dudin i dr., BGU, Minsk, 2009, 132–137
[5] N. Danford, Dzh. T. Shvarts, Lineinye operatory. Obschaya teoriya, IL, M., 1962, 522 pp.