Multiregime queueing network with random staying time of different types of negative customers
Problemy fiziki, matematiki i tehniki, no. 4 (2012), pp. 74-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers an open queueing network with different types of positive, negative customers and multiregime service strategies. Staying time of negative customers in each node is the random value having exponential distribution. Every node can operate in several regimes answering different degrees of their working capacity. The conditions of multiplicativity and an analytical view of stationary distribution of the network states probabilities are found.
Keywords: queueing network, different types of positive, negative customers, stationary distribution.
Mots-clés : multiregime service
@article{PFMT_2012_4_a14,
     author = {O. V. Yakubovich and Y. E. Dudovskaya},
     title = {Multiregime queueing network with random staying time of different types of negative customers},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {74--77},
     publisher = {mathdoc},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2012_4_a14/}
}
TY  - JOUR
AU  - O. V. Yakubovich
AU  - Y. E. Dudovskaya
TI  - Multiregime queueing network with random staying time of different types of negative customers
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2012
SP  - 74
EP  - 77
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2012_4_a14/
LA  - ru
ID  - PFMT_2012_4_a14
ER  - 
%0 Journal Article
%A O. V. Yakubovich
%A Y. E. Dudovskaya
%T Multiregime queueing network with random staying time of different types of negative customers
%J Problemy fiziki, matematiki i tehniki
%D 2012
%P 74-77
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2012_4_a14/
%G ru
%F PFMT_2012_4_a14
O. V. Yakubovich; Y. E. Dudovskaya. Multiregime queueing network with random staying time of different types of negative customers. Problemy fiziki, matematiki i tehniki, no. 4 (2012), pp. 74-77. http://geodesic.mathdoc.fr/item/PFMT_2012_4_a14/

[1] E. Gelenbe, R. Schassberger, “Stability of product-form $G$-networks”, Probab. Eng. and Inf. Sci., 6 (1992), 271–276 | DOI | Zbl

[2] E. Gelenbe, “Product-form networks with negative and positive customers”, J. Appl. Prob., 28 (1991), 656–663 | DOI | MR | Zbl

[3] O. V. Yakubovich, “Ctatsionarnoe raspredelenie seti massovogo obsluzhivaniya s razlichnymi tipami otritsatelnykh i polozhitelnykh zayavok i ogranicheniem na vremya ozhidaniya”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2007, no. 6 (45), 198–202 | MR

[4] Yu. E. Letunovich, “Otkrytye neodnorodnye seti s mnogorezhimnymi strategiyami obsluzhivaniya i ogranicheniem na vremya prebyvaniya”, Materialy mezhdunar. nauch. konf. «Sovremennye matematicheskie metody analiza i optimizatsii informatsionno-telekommunikatsionnykh setei» (Minsk, 26–29 yanvarya 2009 g.), Massovoe obsluzhivanie: potoki, sistemy, seti, 20, eds. A. N. Dudin i dr., BGU, Minsk, 2009, 132–137

[5] N. Danford, Dzh. T. Shvarts, Lineinye operatory. Obschaya teoriya, IL, M., 1962, 522 pp.