Numerical modeling of equilibrium capillary surfaces with irregular boundary conditions
Problemy fiziki, matematiki i tehniki, no. 3 (2012), pp. 88-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

The algorithm for numerical modeling of equilibrium capillary surfaces with irregular contact conditions is presented. It is a combination of an iteration-difference method to solve the boundary-value problem and a Runge-Kutta method to solve the initial-value problem for modeling of equilibrium shapes of a capillary surface in contact with the fracture line of a solid wall. The algorithm is approved on the well-known problem of capillary hydrostatics about fluid flowing out of the capillary.
Keywords: capillary surface, parametric differential equations, irregular boundary conditions, numerical modeling, computational algorithm, numerical results.
@article{PFMT_2012_3_a15,
     author = {V. K. Polevikov and Yu. N. Volotovskaya},
     title = {Numerical modeling of equilibrium capillary surfaces with irregular boundary conditions},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {88--93},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2012_3_a15/}
}
TY  - JOUR
AU  - V. K. Polevikov
AU  - Yu. N. Volotovskaya
TI  - Numerical modeling of equilibrium capillary surfaces with irregular boundary conditions
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2012
SP  - 88
EP  - 93
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2012_3_a15/
LA  - ru
ID  - PFMT_2012_3_a15
ER  - 
%0 Journal Article
%A V. K. Polevikov
%A Yu. N. Volotovskaya
%T Numerical modeling of equilibrium capillary surfaces with irregular boundary conditions
%J Problemy fiziki, matematiki i tehniki
%D 2012
%P 88-93
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2012_3_a15/
%G ru
%F PFMT_2012_3_a15
V. K. Polevikov; Yu. N. Volotovskaya. Numerical modeling of equilibrium capillary surfaces with irregular boundary conditions. Problemy fiziki, matematiki i tehniki, no. 3 (2012), pp. 88-93. http://geodesic.mathdoc.fr/item/PFMT_2012_3_a15/

[1] L. A. Slobozhanin, Gidrostatika pri slaboi gravitatsii. Forma i ustoichivost svobodnoi poverkhnosti, Avtoref. dis. ... d-ra fiz.-mat. nauk: 01.02.05, AN SSSR, Novosibirsk, 1988, 32 pp.

[2] A. D. Myshkis i dr., Metody resheniya zadach gidromekhaniki dlya uslovii nevesomosti, ed. A. D. Myshkis, Naukova dumka, Kiev, 1992, 592 pp. | Zbl

[3] V. G. Babskii i dr., Gidromekhanika nevesomosti, ed. A. D. Myshkis, Nauka, M., 1976, 504 pp.

[4] A. D. Myshkis, Low-Gravity Fluid Mechanics, Springer-Verlag, 1987, 583 pp. | MR | Zbl

[5] D. A. Labuntsov, V. V. Yagov, Mekhanika dvukhfaznykh sistem, Ucheb. posobie dlya vuzov, Izdatelstvo MEI, M., 2000, 374 pp.

[6] L. A. Slobozhanin, A. D. Tyuptsov, Ob evolyutsii i otryve kapel i puzyrei pri ikh medlennom roste, Preprint, Fiz.-tekhn. institut nizkikh temperatur AN USSR, Kharkov, 1972, 16 pp.

[7] L. A. Slobozhanin, N. S. Scherbakova, Zadachi gidrostatiki, voznikayuschie pri modelirovanii protsessa ochistki materialov i vyraschivaniya monokristallov metodom plavayuschei zony. Chast I: Ravnovesie i ustoichivost rasplavlennoi kapli, Preprint No 13, Fiz.-tekhn. institut nizkikh temperatur AN USSR, Kharkov, 1984, 26 pp.

[8] V. K. Polevikov, “Methods for numerical modeling of two-dimensional capillary surfaces”, Computational Methods in Applied Mathematics, 4:1 (2004), 66–93 | DOI | MR | Zbl

[9] V. K. Polevikov, “O metodakh chislennogo modelirovaniya ravnovesnykh kapillyarnykh poverkhnostei”, Differentsialnye uravneniya, 35:7 (1999), 975–981 | MR | Zbl