Parallelization of the calculations at the solution of the optimal control problem of a thermal process in the rod
Problemy fiziki, matematiki i tehniki, no. 3 (2012), pp. 82-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

The optimal control problem of a thermal process in the rod with the heat exchange on one of its ends is considered in the article. It’s reduced to the optimal control problem of the special large-scale differential equations system. This problem is solved by a method of quasidecomposition. The algorithm of the operation of the optimal regulator which forms current values of the optimal feedback in real time is described. The numerical example illustrating the use of the quasidecomposition method is brought.
Keywords: thermal process, optimal control problem, method of quasidecomposition, optimal feedback, optimal regulator.
@article{PFMT_2012_3_a14,
     author = {D. S. Kuzmenkov},
     title = {Parallelization of the calculations at the solution of the optimal control problem of a thermal process in the rod},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {82--87},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2012_3_a14/}
}
TY  - JOUR
AU  - D. S. Kuzmenkov
TI  - Parallelization of the calculations at the solution of the optimal control problem of a thermal process in the rod
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2012
SP  - 82
EP  - 87
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2012_3_a14/
LA  - ru
ID  - PFMT_2012_3_a14
ER  - 
%0 Journal Article
%A D. S. Kuzmenkov
%T Parallelization of the calculations at the solution of the optimal control problem of a thermal process in the rod
%J Problemy fiziki, matematiki i tehniki
%D 2012
%P 82-87
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2012_3_a14/
%G ru
%F PFMT_2012_3_a14
D. S. Kuzmenkov. Parallelization of the calculations at the solution of the optimal control problem of a thermal process in the rod. Problemy fiziki, matematiki i tehniki, no. 3 (2012), pp. 82-87. http://geodesic.mathdoc.fr/item/PFMT_2012_3_a14/

[1] A. G. Butkovskii, Metody optimalnogo upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1975, 568 pp.

[2] A. I. Egorov, Optimalnoe upravlenie teplovymi i diffuzionnymi protsessami, Nauka, M., 1978, 468 pp. | MR

[3] Zh. L. Lions, Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972, 414 pp. | MR

[4] M. A. Bokhari, I. S. Sadek, “Optimal control of parabolic systems with infinite time horizons”, Appl. Math and Comput., 206:2 (2008), 678–684 | DOI | MR | Zbl

[5] R. Gabasov, F. M. Kirillova, “Printsipy optimalnogo upravleniya”, Dokl. NAN Belarusi, 48:1 (2004), 15–18 | MR | Zbl

[6] V. I. Krylov, V. V. Bobkov, P. I. Monastyrnyi, Nachala teorii vychislitelnykh metodov. Uravneniya v chastnykh proizvodnykh, Nauka i tekhnika, Mn., 1986, 311 pp. | MR

[7] R. Gabasov, F. M. Kirillova, D. S. Kuzmenkov, “Optimalnoe upravlenie teplovym protsessom”, Dokl. NAN Belarusi, 53:1 (2009), 5–9 | MR

[8] R. Gabasov, F. M. Kirillova, A. I. Tyatyushkin, Konstruktivnye metody optimizatsii, V 5 ch. (1984–1998), v. 1, Lineinye zadachi, Universitetskoe, Minsk, 1984, 213 pp. | MR