Convergence of the fourier series for differentiable functions of a multidimensional $p$-adic argument
Problemy fiziki, matematiki i tehniki, no. 3 (2012), pp. 65-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article discusses the convergence of the Fourier series for functions of the multidimensional $p$-adic argument. For this purpose we define the multidimensional Mahler function and partial sums of Fourier series for the functions of multidimensional $p$-adic argument. We calculate the norm of the $m$-th derivatives of multidimensional Mahler functions and prove the criterion of $m$ times continuously differentiability in terms of Mahler coefficients. We represent coefficients and partial sums of multidimensional Fourier series in terms of coefficients and partial sums of one-dimensional Fourier series. The main result states that for positive integers $m \ge n$ the Fourier series for function $C^m(\mathbb{Z}_p^n)$ converges uniformly. An example of $f \in C^{n-1}(\mathbb{Z}_p^n)$ with divergent Fourier series is given.
Keywords: function of multidimensional $p$-adic argument, Fourier series, Mahler function.
Mots-clés : Fourier coefficients
@article{PFMT_2012_3_a11,
     author = {M. A. Zarenok},
     title = {Convergence of the fourier series for differentiable functions of a multidimensional $p$-adic argument},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {65--73},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2012_3_a11/}
}
TY  - JOUR
AU  - M. A. Zarenok
TI  - Convergence of the fourier series for differentiable functions of a multidimensional $p$-adic argument
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2012
SP  - 65
EP  - 73
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2012_3_a11/
LA  - ru
ID  - PFMT_2012_3_a11
ER  - 
%0 Journal Article
%A M. A. Zarenok
%T Convergence of the fourier series for differentiable functions of a multidimensional $p$-adic argument
%J Problemy fiziki, matematiki i tehniki
%D 2012
%P 65-73
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2012_3_a11/
%G ru
%F PFMT_2012_3_a11
M. A. Zarenok. Convergence of the fourier series for differentiable functions of a multidimensional $p$-adic argument. Problemy fiziki, matematiki i tehniki, no. 3 (2012), pp. 65-73. http://geodesic.mathdoc.fr/item/PFMT_2012_3_a11/

[1] I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, per. s angl. V. V. Zharinova, eds. E. D. Solomentsev, S. B. Stechkin, Mir, M., 1974, 333 pp. | Zbl

[2] W. Schikhov, Ultrametric calculus. An introduction to $p$-adic analysis, Cambridge Univ. Press, Cambridge, 1984, 306 pp. | MR

[3] A. Ya. Radyna, Ya. M. Radyna, Ya. V. Radyna, Pachatki narkhimedavaga annalizu, dapam. dlya studentaŭ mekh.-mat. fak., BDU, Minsk, 2010, 111 pp.

[4] Zarenok M. A., “$p$-Adicheskoe yadro Dirikhle i skhodimost mnogomernogo ryada Fure dlya nepreryvnykh i summiruemykh funktsii na $\mathbb{Z}_p^n$”, Vestnik BGU. Seriya 1, 2012, no. 1, 90–95

[5] “Skhodimost ryadov Fure nepreryvno-differentsiruemykh funktsii $p$-adicheskogo argumenta”, Vestnik VGU, 2012, no. 1 (67), 12–17

[6] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994, 352 pp. | MR