Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2012_3_a11, author = {M. A. Zarenok}, title = {Convergence of the fourier series for differentiable functions of a multidimensional $p$-adic argument}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {65--73}, publisher = {mathdoc}, number = {3}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2012_3_a11/} }
TY - JOUR AU - M. A. Zarenok TI - Convergence of the fourier series for differentiable functions of a multidimensional $p$-adic argument JO - Problemy fiziki, matematiki i tehniki PY - 2012 SP - 65 EP - 73 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2012_3_a11/ LA - ru ID - PFMT_2012_3_a11 ER -
M. A. Zarenok. Convergence of the fourier series for differentiable functions of a multidimensional $p$-adic argument. Problemy fiziki, matematiki i tehniki, no. 3 (2012), pp. 65-73. http://geodesic.mathdoc.fr/item/PFMT_2012_3_a11/
[1] I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, per. s angl. V. V. Zharinova, eds. E. D. Solomentsev, S. B. Stechkin, Mir, M., 1974, 333 pp. | Zbl
[2] W. Schikhov, Ultrametric calculus. An introduction to $p$-adic analysis, Cambridge Univ. Press, Cambridge, 1984, 306 pp. | MR
[3] A. Ya. Radyna, Ya. M. Radyna, Ya. V. Radyna, Pachatki narkhimedavaga annalizu, dapam. dlya studentaŭ mekh.-mat. fak., BDU, Minsk, 2010, 111 pp.
[4] Zarenok M. A., “$p$-Adicheskoe yadro Dirikhle i skhodimost mnogomernogo ryada Fure dlya nepreryvnykh i summiruemykh funktsii na $\mathbb{Z}_p^n$”, Vestnik BGU. Seriya 1, 2012, no. 1, 90–95
[5] “Skhodimost ryadov Fure nepreryvno-differentsiruemykh funktsii $p$-adicheskogo argumenta”, Vestnik VGU, 2012, no. 1 (67), 12–17
[6] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994, 352 pp. | MR