Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2012_3_a10, author = {O. Yu. Dashkova}, title = {Locally soluble $\operatorname{AFN}$-groups}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {58--64}, publisher = {mathdoc}, number = {3}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2012_3_a10/} }
O. Yu. Dashkova. Locally soluble $\operatorname{AFN}$-groups. Problemy fiziki, matematiki i tehniki, no. 3 (2012), pp. 58-64. http://geodesic.mathdoc.fr/item/PFMT_2012_3_a10/
[1] R. E. Phillips, “The structure of groups of finitary transformations”, J. Algebra, 119:2 (1988), 400–448 | DOI | MR | Zbl
[2] R. E. Phillips, “Finitary linear groups: a survey. “Finite and locally finite groups””, NATO ASI ser. C Math. Phys. Sci., 471, Kluwer Acad. Publ., Dordrecht, 1995, 111–146 | MR | Zbl
[3] L. A. Kurdachenko, J. M. Munoz-Escolano, J. Otal, “Antifinitary linear groups”, Forum Math., 20:1 (2008), 7–44 | DOI | MR
[4] B. A. F. Wehrfritz, “Artinian-finitary groups over commutative rings”, Illinois J. Math., 47:1–2 (2003), 551–565 | MR | Zbl
[5] B. A. F. Wehrfritz, “Artinian-finitary groups over commutative rings and non-commutative rings”, J. Lond. Math. Soc. (2), 70:2 (2004), 325–340 | DOI | MR | Zbl
[6] B. A. F. Wehrfritz, “Artinian-finitary groups are locally normal-finitary”, J. Algebra, 287:2 (2005), 417–431 | DOI | MR | Zbl
[7] L. A. Kurdachenko, “O gruppakh s minimaksnymi klassami sopryazhennykh elementov”, Beskonechnye gruppy i primykayuschie algebraicheskie struktury, nauch. tr., ed. Chernikov N. S., Akademiya nauk Ukrainy, Kiev, 1993, 160–177 | MR
[8] D. J. S. Robinson, Finiteness conditions and generalized soluble groups, v. 1, 2, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin–Heidelberg–New York, 1972, 464 pp.
[9] L. A. Kurdachenko, “Neperiodicheskie FC-gruppy i svyazannye klassy lokalno normalnykh grupp i abelevykh grupp bez krucheniya”, Sib. mat. zhurn., 287:2 (1986), 227–236 | MR
[10] B. A. F. Wehrfritz, Infinite linear groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, New York–Heidelberg–Berlin, 1973, 229 pp. | MR | Zbl