Locally soluble $\operatorname{AFN}$-groups
Problemy fiziki, matematiki i tehniki, no. 3 (2012), pp. 58-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be an $\textrm{R}G$-module, where $\textrm{R}$ is a commutative noetherian ring with the unit, $G$ is a locally soluble group, $C_G(A) = 1$, and each proper subgroup $H$ of a group $G$ for which $A/C_A(H)$ is not a noetherian $\textrm{R}$-module, is finitely generated. It is proved that a locally soluble group $G$ with these conditions is hyperabelian. It is described the structure of a group $G$ under consideration if $G$ is a finitely generated soluble group and the quotient module $A/C_A(G)$ is not a noetherian $\textrm{R}$-module.
Keywords: group ring, locally soluble group, noetherian $\textrm{R}$-module.
@article{PFMT_2012_3_a10,
     author = {O. Yu. Dashkova},
     title = {Locally soluble $\operatorname{AFN}$-groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {58--64},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2012_3_a10/}
}
TY  - JOUR
AU  - O. Yu. Dashkova
TI  - Locally soluble $\operatorname{AFN}$-groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2012
SP  - 58
EP  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2012_3_a10/
LA  - ru
ID  - PFMT_2012_3_a10
ER  - 
%0 Journal Article
%A O. Yu. Dashkova
%T Locally soluble $\operatorname{AFN}$-groups
%J Problemy fiziki, matematiki i tehniki
%D 2012
%P 58-64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2012_3_a10/
%G ru
%F PFMT_2012_3_a10
O. Yu. Dashkova. Locally soluble $\operatorname{AFN}$-groups. Problemy fiziki, matematiki i tehniki, no. 3 (2012), pp. 58-64. http://geodesic.mathdoc.fr/item/PFMT_2012_3_a10/

[1] R. E. Phillips, “The structure of groups of finitary transformations”, J. Algebra, 119:2 (1988), 400–448 | DOI | MR | Zbl

[2] R. E. Phillips, “Finitary linear groups: a survey. “Finite and locally finite groups””, NATO ASI ser. C Math. Phys. Sci., 471, Kluwer Acad. Publ., Dordrecht, 1995, 111–146 | MR | Zbl

[3] L. A. Kurdachenko, J. M. Munoz-Escolano, J. Otal, “Antifinitary linear groups”, Forum Math., 20:1 (2008), 7–44 | DOI | MR

[4] B. A. F. Wehrfritz, “Artinian-finitary groups over commutative rings”, Illinois J. Math., 47:1–2 (2003), 551–565 | MR | Zbl

[5] B. A. F. Wehrfritz, “Artinian-finitary groups over commutative rings and non-commutative rings”, J. Lond. Math. Soc. (2), 70:2 (2004), 325–340 | DOI | MR | Zbl

[6] B. A. F. Wehrfritz, “Artinian-finitary groups are locally normal-finitary”, J. Algebra, 287:2 (2005), 417–431 | DOI | MR | Zbl

[7] L. A. Kurdachenko, “O gruppakh s minimaksnymi klassami sopryazhennykh elementov”, Beskonechnye gruppy i primykayuschie algebraicheskie struktury, nauch. tr., ed. Chernikov N. S., Akademiya nauk Ukrainy, Kiev, 1993, 160–177 | MR

[8] D. J. S. Robinson, Finiteness conditions and generalized soluble groups, v. 1, 2, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin–Heidelberg–New York, 1972, 464 pp.

[9] L. A. Kurdachenko, “Neperiodicheskie FC-gruppy i svyazannye klassy lokalno normalnykh grupp i abelevykh grupp bez krucheniya”, Sib. mat. zhurn., 287:2 (1986), 227–236 | MR

[10] B. A. F. Wehrfritz, Infinite linear groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, New York–Heidelberg–Berlin, 1973, 229 pp. | MR | Zbl