Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2012_2_a9, author = {A. F. Vasil'ev and T. I. Vasilyeva and A. V. Syrokvashin}, title = {A note on intersections of some maximal subgroups of finite groups}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {62--64}, publisher = {mathdoc}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2012_2_a9/} }
TY - JOUR AU - A. F. Vasil'ev AU - T. I. Vasilyeva AU - A. V. Syrokvashin TI - A note on intersections of some maximal subgroups of finite groups JO - Problemy fiziki, matematiki i tehniki PY - 2012 SP - 62 EP - 64 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2012_2_a9/ LA - ru ID - PFMT_2012_2_a9 ER -
A. F. Vasil'ev; T. I. Vasilyeva; A. V. Syrokvashin. A note on intersections of some maximal subgroups of finite groups. Problemy fiziki, matematiki i tehniki, no. 2 (2012), pp. 62-64. http://geodesic.mathdoc.fr/item/PFMT_2012_2_a9/
[1] G. Frattini, “Intorno alla generasione dei gruppi di operazioni”, Atti Acad. dei Lincei, 1 (1885), 281–285
[2] W. Gaschütz, “Über die $\Phi$-Untergruppen endlicher Gruppen”, Math. Z., 58 (1953), 160–170 | DOI | MR
[3] V. S. Monakhov, “Zamechanie o maksimalnykh podgruppakh konechnykh grupp”, Dokl. NAN Belarusi, 47:4 (2003), 31–33 | MR | Zbl
[4] V. S. Monakhov, “Zamechanie o peresechenii nenormalnykh maksimalnykh podgrupp konechnykh grupp”, Izvestiya GGU im. F. Skoriny, 2004, no. 6 (27), 81 | MR
[5] S. F. Kamornikov, M. V. Selkin, Podgruppovye funktory i klassy konechnykh grupp, Bel. navuka, Mn., 2003, 254 pp.
[6] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp. | MR | Zbl
[7] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992, 891 pp. | MR
[8] M. V. Selkin, R. V. Borodich, “O peresechenii maksimalnykh podgrupp konechnykh grupp”, Vestnik SamGU. Estestvenno-nauchnaya ser., 2009, no. 8 (74), 67–76
[9] B. Huppert, N. Blackburn, Finite groups, v. III, Springer, Berlin–Heidelberg–New York, 1982, 458 pp.
[10] R. Griss, P. Schmid, “The Frattini module”, Arch. Math., 30:3 (1978), 256–266 | DOI | MR