Simple non abelian group with $D_\pi$ Schmidt subgroups
Problemy fiziki, matematiki i tehniki, no. 2 (2012), pp. 95-98

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite simple group, $S$ be its Hall Schmidt $\pi$-subgroup. If $2\in\pi$ then $G$ is not a $D_\pi$-group. If $2\notin\pi$ and $G\notin\{A_n(q),^2 A_n(q)\}$ then $G$ is a $D_\pi$-group.
Mots-clés : group, simple group, $D_\pi$-group.
Keywords: subgroup, Hall Schmidt $\pi$-subgroup
@article{PFMT_2012_2_a15,
     author = {V. N. Tyutyanov and P. V. Bychkov},
     title = {Simple non abelian group with $D_\pi$ {Schmidt} subgroups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {95--98},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2012_2_a15/}
}
TY  - JOUR
AU  - V. N. Tyutyanov
AU  - P. V. Bychkov
TI  - Simple non abelian group with $D_\pi$ Schmidt subgroups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2012
SP  - 95
EP  - 98
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2012_2_a15/
LA  - ru
ID  - PFMT_2012_2_a15
ER  - 
%0 Journal Article
%A V. N. Tyutyanov
%A P. V. Bychkov
%T Simple non abelian group with $D_\pi$ Schmidt subgroups
%J Problemy fiziki, matematiki i tehniki
%D 2012
%P 95-98
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2012_2_a15/
%G ru
%F PFMT_2012_2_a15
V. N. Tyutyanov; P. V. Bychkov. Simple non abelian group with $D_\pi$ Schmidt subgroups. Problemy fiziki, matematiki i tehniki, no. 2 (2012), pp. 95-98. http://geodesic.mathdoc.fr/item/PFMT_2012_2_a15/