The solvability criteria for finite groups with restrictions on cofactors of maximal sugroups
Problemy fiziki, matematiki i tehniki, no. 2 (2012), pp. 88-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

The solvability of a finite group whose cofactors of maximal subgroups is supersolvable and satisfy some additional restrictions is established.
Keywords: finite group, supersoluble group, maximal subgroup, cofactor.
Mots-clés : solvable group
@article{PFMT_2012_2_a14,
     author = {I. V. Lemeshev and V. S. Monakhov},
     title = {The solvability criteria for finite groups with restrictions on cofactors of maximal sugroups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {88--94},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2012_2_a14/}
}
TY  - JOUR
AU  - I. V. Lemeshev
AU  - V. S. Monakhov
TI  - The solvability criteria for finite groups with restrictions on cofactors of maximal sugroups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2012
SP  - 88
EP  - 94
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2012_2_a14/
LA  - ru
ID  - PFMT_2012_2_a14
ER  - 
%0 Journal Article
%A I. V. Lemeshev
%A V. S. Monakhov
%T The solvability criteria for finite groups with restrictions on cofactors of maximal sugroups
%J Problemy fiziki, matematiki i tehniki
%D 2012
%P 88-94
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2012_2_a14/
%G ru
%F PFMT_2012_2_a14
I. V. Lemeshev; V. S. Monakhov. The solvability criteria for finite groups with restrictions on cofactors of maximal sugroups. Problemy fiziki, matematiki i tehniki, no. 2 (2012), pp. 88-94. http://geodesic.mathdoc.fr/item/PFMT_2012_2_a14/

[1] V. S. Monakhov, Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006, 207 pp.

[2] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp. | MR | Zbl

[3] W. Gaschutz, Lectures of subgroups of Sylow type in finite soluble groups, Notes on pure mathematics, 11, Australian National University, Canberra, 1979, 100 pp. | MR

[4] Ph. Hall, “Complemented group”, J. London Math. Soc., 12 (1937), 201–204 | DOI | MR

[5] W. Gaschutz, “Gruppen in denen das normalteilersein transitiv ist”, J. Reine Angew. Math., 198 (1957), 87–92 | MR

[6] S. Srinivasan, “Two sufficient conditions for supersolvability of finite groups”, Isr. J. Math., 35 (1980), 210–214 | DOI | MR | Zbl

[7] G. L. Wall, “Groups with maximal subgroups of Sylow subgroups normal”, Isr. J. Math., 43 (1982), 166–168 | DOI | MR | Zbl

[8] R. Baer, “Classes of finite groups and their properties”, Illinois J. Math., 1 (1957), 115–187 | MR | Zbl

[9] M. Asaad, “On the solvability of finite groups”, Commun. Algebra, 37 (2009), 719–723 | DOI | MR | Zbl

[10] The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.4.12, , 2009 http://www.gap-system.org

[11] B. Huppert, Endliche Gruppen, v. I, Springer, Berlin–Heidelberg–New York, 1967 | MR | Zbl

[12] T. A. Peng, “Finite groups with pro-normal subgroups”, Proc. Amer. Math. Soc., 20 (1969), 232–234 | DOI | MR | Zbl

[13] G. Glauberman, “Subgroups of finite groups”, Bull. Am. Math. Soc., 73 (1967), 1–12 | DOI | MR | Zbl

[14] A. V. Romanovskii, “Gruppy s khollovymi normalnymi delitelyami”, Konechnye gruppy, Nauka i tekhnika, Minsk, 1966, 98–115 | MR