Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2012_2_a14, author = {I. V. Lemeshev and V. S. Monakhov}, title = {The solvability criteria for finite groups with restrictions on cofactors of maximal sugroups}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {88--94}, publisher = {mathdoc}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2012_2_a14/} }
TY - JOUR AU - I. V. Lemeshev AU - V. S. Monakhov TI - The solvability criteria for finite groups with restrictions on cofactors of maximal sugroups JO - Problemy fiziki, matematiki i tehniki PY - 2012 SP - 88 EP - 94 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2012_2_a14/ LA - ru ID - PFMT_2012_2_a14 ER -
%0 Journal Article %A I. V. Lemeshev %A V. S. Monakhov %T The solvability criteria for finite groups with restrictions on cofactors of maximal sugroups %J Problemy fiziki, matematiki i tehniki %D 2012 %P 88-94 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2012_2_a14/ %G ru %F PFMT_2012_2_a14
I. V. Lemeshev; V. S. Monakhov. The solvability criteria for finite groups with restrictions on cofactors of maximal sugroups. Problemy fiziki, matematiki i tehniki, no. 2 (2012), pp. 88-94. http://geodesic.mathdoc.fr/item/PFMT_2012_2_a14/
[1] V. S. Monakhov, Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006, 207 pp.
[2] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp. | MR | Zbl
[3] W. Gaschutz, Lectures of subgroups of Sylow type in finite soluble groups, Notes on pure mathematics, 11, Australian National University, Canberra, 1979, 100 pp. | MR
[4] Ph. Hall, “Complemented group”, J. London Math. Soc., 12 (1937), 201–204 | DOI | MR
[5] W. Gaschutz, “Gruppen in denen das normalteilersein transitiv ist”, J. Reine Angew. Math., 198 (1957), 87–92 | MR
[6] S. Srinivasan, “Two sufficient conditions for supersolvability of finite groups”, Isr. J. Math., 35 (1980), 210–214 | DOI | MR | Zbl
[7] G. L. Wall, “Groups with maximal subgroups of Sylow subgroups normal”, Isr. J. Math., 43 (1982), 166–168 | DOI | MR | Zbl
[8] R. Baer, “Classes of finite groups and their properties”, Illinois J. Math., 1 (1957), 115–187 | MR | Zbl
[9] M. Asaad, “On the solvability of finite groups”, Commun. Algebra, 37 (2009), 719–723 | DOI | MR | Zbl
[10] The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.4.12, , 2009 http://www.gap-system.org
[11] B. Huppert, Endliche Gruppen, v. I, Springer, Berlin–Heidelberg–New York, 1967 | MR | Zbl
[12] T. A. Peng, “Finite groups with pro-normal subgroups”, Proc. Amer. Math. Soc., 20 (1969), 232–234 | DOI | MR | Zbl
[13] G. Glauberman, “Subgroups of finite groups”, Bull. Am. Math. Soc., 73 (1967), 1–12 | DOI | MR | Zbl
[14] A. V. Romanovskii, “Gruppy s khollovymi normalnymi delitelyami”, Konechnye gruppy, Nauka i tekhnika, Minsk, 1966, 98–115 | MR