Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2012_1_a8, author = {V. L. Khandramai and O. P. Solovtsova and V. G. Teplyakov}, title = {Gross{\textendash}Llevellyn {Smith} sum rule: higher twist terms contribution}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {46--50}, publisher = {mathdoc}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2012_1_a8/} }
TY - JOUR AU - V. L. Khandramai AU - O. P. Solovtsova AU - V. G. Teplyakov TI - Gross–Llevellyn Smith sum rule: higher twist terms contribution JO - Problemy fiziki, matematiki i tehniki PY - 2012 SP - 46 EP - 50 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2012_1_a8/ LA - ru ID - PFMT_2012_1_a8 ER -
V. L. Khandramai; O. P. Solovtsova; V. G. Teplyakov. Gross–Llevellyn Smith sum rule: higher twist terms contribution. Problemy fiziki, matematiki i tehniki, no. 1 (2012), pp. 46-50. http://geodesic.mathdoc.fr/item/PFMT_2012_1_a8/
[1] N. N. Bogolyubov, D. V. Shirkov, Kvantovannye polya, 3-e izd., dop., Fizmatlit, M., 2005, 384 pp. | Zbl
[2] P. A. Baikov, K. G. Chetyrkin, J. H. Kuhn, “Adler function, DIS sum rules and Crewther relations”, Nucl. Phys. Proc. Suppl., 205–206 (2010), 237–241 | DOI
[3] V. L. Khandramai et al., “Four-loop QCD analysis of the Bjorken sum rule vs data”, Phys. Lett. B, 706 (2012), 340–344 | DOI
[4] J. D. Bjorken, “Applications of the chiral U(6)x(6) algebra of current densities”, Phys. Rev., 148 (1966), 1467–1478 | DOI
[5] J. D. Bjorken, “Inelastic Scattering of Polarized Leptons from Polarized Nucleons”, Phys. Rev. D, 1 (1970), 1376–1379 | DOI
[6] M. Amarian et al., “The $\mathcal{Q}^2$ evolution of the generalized Gerasimov–Drell–Hearn integral for the neutron using a $\mathrm{He}^3$ target”, Phys. Rev. Lett., 89 (2002), 242301 | DOI
[7] R. Fatemi et al., “Measurement of the proton spin structure function $g_1(x,\mathcal{Q}^2)$ for $\mathcal{Q}^2$ from $0.15\mathrm{GeV}^2$ to $1.6\mathrm{GeV}^2$ with CLAS”, Phys. Rev. Lett., 91 (2003), 222002 | DOI
[8] M. Amarian et al., “$\mathcal{Q}^2$ evolution of the neutron spin structure moments using a $\mathrm{He}^3$ target”, Phys. Rev. Lett., 92 (2004), 022301 | DOI
[9] A. Deur et al., “Experimental determination of the evolution of the Bjorken integral at low $\mathcal{Q}^2$”, Phys. Rev. Lett., 93 (2004), 212001 | DOI
[10] K. V. Dharmawardane et al., “Measurement of the $x$- and $\mathcal{Q}^2$-dependence of the asymmetry $A_1$ on the nucleon”, Phys. Lett. B, 641 (2006), 11–17 | DOI
[11] P. E. Bosted et al., “Quark-hadron duality in spin structure functions $g_1^p$ and $g_1^d$”, Phys. Rev. C, 75 (2007), 035203 | DOI
[12] Y. Prok et al., “Moments of the spin structure functions $g_1^p$ and $g_1^d$ for $0.05\mathcal{Q}^23.0\mathrm{GeV}^2$”, Phys. Lett. B, 672, 12–16
[13] D. J. Gross, C. H. Llewellyn Smith, “High-energy neutrino-nucleon scattering, current algebra and partons”, Nucl. Phys. B, 14 (1969), 337–347 | DOI
[14] A. L. Kataev et al., “Next to next-to-leading order QCD analysis of the revised CCFR data for $xF_3$ structure function and the higher twist contributions”, Phys. Lett. B, 417 (1998), 374–384 | DOI
[15] M. V. Tokarev, A. V. Sidorov, “NNLO QCD analysis of CCFR data on $xF_3$ structure function and Gross–Llewellyn Smith sum rule with higher twist and nuclear corrections”, Nuovo Cim. A, 110 (1997), 1401–1409
[16] K. Nakamura et al. [Particle Data Group], “Review of particle physics”, J. Phys. G, 37 (2010), 075021 | DOI
[17] L. S. Barabash et al. [IHEP-JINR Neutrino Detector Collab.], Measurement of $xF_3$, $F_2$ structure functions and Gross–Llewellyn–Smith sum rule with IHEP-JINR neutrino detector, Preprint JINR, E2-96-308, Dubna, 1996
[18] F. Bergsma et al. [CHARM Collab.], “Experimental study of the nucleon structure functions and of the gluon distribution from charged current neutrino and anti-neutrinos interactions”, Phys. Lett. B, 123 (1983), 269–275 | DOI
[19] W. C. Leung et al. [CCFR Collab.], “A measurement of the Gross–Llewellyn Smith sum rule from the CCFR $xF_3$ structure function”, Phys. Lett. B, 317 (1993), 655–659 | DOI
[20] J. H. Kim et al. [CCFR/NuTeV Collab.], “A Measurement of $\alpha_s(\mathcal{Q}^2)$ from the Gross–Llewellyn–Smith sum rule”, Phys. Rev. Lett., 81 (1998), 3595–3598 | DOI
[21] K. Abe et al., “Precision determination of the neutron spin structure function $g_1^n$”, Phys. Rev. Lett., 79 (1997), 26–30 | DOI
[22] P. L. Anthony et al., “Measurements of the $\mathcal{Q}^2$-dependence of the proton and neutron spin structure functions $g_1^p$ and $g_1^n$”, Phys. Lett. B, 493 (2000), 19–28 | DOI
[23] V. M. Braun, A. V. Kolesnichenko, “Power corrections to Bjorken and Gross–Llewellyn Smith sum rules in QCD”, Nucl. Phys. B, 283 (1987), 723 | DOI
[24] I. I. Balitsky, V. M. Braun, A. V. Kolesnichenko, “Power corrections $1/\mathcal{Q}^2$ to parton sum rules for deep inelastic scattering from polarized targets”, Phys. Lett. B, 242 (1990), 245–250 | DOI
[25] “Erratum to: I. I. Balitsky, V. M. Braun, A. V. Kolesnichenko, Power corrections $1/\mathcal{Q}^2$ to parton sum rules for deep inelastic scattering from polarized targets”, Phys. Lett. B, 318 (1993), 648–650 | DOI
[26] G. G. Ross, R. G. Roberts, “Improved QCD sum rule estimates of the higher twist contributions to polarized and unpolarized nucleon structure functions”, Phys. Lett. B, 322 (1994), 425–430 | DOI
[27] E. Stein et al., “QCD sum rule calculation of twist-three contributions to polarized nucleon structure functions”, Phys. Lett. B, 343 (1995), 369–376 | DOI
[28] J. Balla, M. V. Polyakov, C. Weiss, “Nucleon matrix elements of higher twist operators from the instanton vacuum”, Nucl. Phys. B, 510 (1998), 327–364
[29] J. Blumlein, H. Bottcher, “QCD Analysis of polarized deep inelastic scattering data”, Nucl. Phys. B, 841 (2010), 205–230 | DOI