Gross–Llevellyn Smith sum rule: higher twist terms contribution
Problemy fiziki, matematiki i tehniki, no. 1 (2012), pp. 46-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

Four-loop QCD analysis of the Gross–Llewellyn Smith sum rule was performed. The extraction of the twist-4 term from the experimental data and comparison with the corresponding results obtained from the Bjorken sum rules was made. It is shown that within the error the value of the twist-4 term in the Gross–Llewellyn Smith sum rule differs from the corresponding value extracted from the Bjorken sum rule.
Keywords: deep-inelastic lepton-hadron scattering, Gross–Llevellyn Smith sum rule, perturbative theory, higher twists, quantum chromodinamics (QCD).
@article{PFMT_2012_1_a8,
     author = {V. L. Khandramai and O. P. Solovtsova and V. G. Teplyakov},
     title = {Gross{\textendash}Llevellyn {Smith} sum rule: higher twist terms contribution},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {46--50},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2012_1_a8/}
}
TY  - JOUR
AU  - V. L. Khandramai
AU  - O. P. Solovtsova
AU  - V. G. Teplyakov
TI  - Gross–Llevellyn Smith sum rule: higher twist terms contribution
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2012
SP  - 46
EP  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2012_1_a8/
LA  - ru
ID  - PFMT_2012_1_a8
ER  - 
%0 Journal Article
%A V. L. Khandramai
%A O. P. Solovtsova
%A V. G. Teplyakov
%T Gross–Llevellyn Smith sum rule: higher twist terms contribution
%J Problemy fiziki, matematiki i tehniki
%D 2012
%P 46-50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2012_1_a8/
%G ru
%F PFMT_2012_1_a8
V. L. Khandramai; O. P. Solovtsova; V. G. Teplyakov. Gross–Llevellyn Smith sum rule: higher twist terms contribution. Problemy fiziki, matematiki i tehniki, no. 1 (2012), pp. 46-50. http://geodesic.mathdoc.fr/item/PFMT_2012_1_a8/

[1] N. N. Bogolyubov, D. V. Shirkov, Kvantovannye polya, 3-e izd., dop., Fizmatlit, M., 2005, 384 pp. | Zbl

[2] P. A. Baikov, K. G. Chetyrkin, J. H. Kuhn, “Adler function, DIS sum rules and Crewther relations”, Nucl. Phys. Proc. Suppl., 205–206 (2010), 237–241 | DOI

[3] V. L. Khandramai et al., “Four-loop QCD analysis of the Bjorken sum rule vs data”, Phys. Lett. B, 706 (2012), 340–344 | DOI

[4] J. D. Bjorken, “Applications of the chiral U(6)x(6) algebra of current densities”, Phys. Rev., 148 (1966), 1467–1478 | DOI

[5] J. D. Bjorken, “Inelastic Scattering of Polarized Leptons from Polarized Nucleons”, Phys. Rev. D, 1 (1970), 1376–1379 | DOI

[6] M. Amarian et al., “The $\mathcal{Q}^2$ evolution of the generalized Gerasimov–Drell–Hearn integral for the neutron using a $\mathrm{He}^3$ target”, Phys. Rev. Lett., 89 (2002), 242301 | DOI

[7] R. Fatemi et al., “Measurement of the proton spin structure function $g_1(x,\mathcal{Q}^2)$ for $\mathcal{Q}^2$ from $0.15\mathrm{GeV}^2$ to $1.6\mathrm{GeV}^2$ with CLAS”, Phys. Rev. Lett., 91 (2003), 222002 | DOI

[8] M. Amarian et al., “$\mathcal{Q}^2$ evolution of the neutron spin structure moments using a $\mathrm{He}^3$ target”, Phys. Rev. Lett., 92 (2004), 022301 | DOI

[9] A. Deur et al., “Experimental determination of the evolution of the Bjorken integral at low $\mathcal{Q}^2$”, Phys. Rev. Lett., 93 (2004), 212001 | DOI

[10] K. V. Dharmawardane et al., “Measurement of the $x$- and $\mathcal{Q}^2$-dependence of the asymmetry $A_1$ on the nucleon”, Phys. Lett. B, 641 (2006), 11–17 | DOI

[11] P. E. Bosted et al., “Quark-hadron duality in spin structure functions $g_1^p$ and $g_1^d$”, Phys. Rev. C, 75 (2007), 035203 | DOI

[12] Y. Prok et al., “Moments of the spin structure functions $g_1^p$ and $g_1^d$ for $0.05\mathcal{Q}^23.0\mathrm{GeV}^2$”, Phys. Lett. B, 672, 12–16

[13] D. J. Gross, C. H. Llewellyn Smith, “High-energy neutrino-nucleon scattering, current algebra and partons”, Nucl. Phys. B, 14 (1969), 337–347 | DOI

[14] A. L. Kataev et al., “Next to next-to-leading order QCD analysis of the revised CCFR data for $xF_3$ structure function and the higher twist contributions”, Phys. Lett. B, 417 (1998), 374–384 | DOI

[15] M. V. Tokarev, A. V. Sidorov, “NNLO QCD analysis of CCFR data on $xF_3$ structure function and Gross–Llewellyn Smith sum rule with higher twist and nuclear corrections”, Nuovo Cim. A, 110 (1997), 1401–1409

[16] K. Nakamura et al. [Particle Data Group], “Review of particle physics”, J. Phys. G, 37 (2010), 075021 | DOI

[17] L. S. Barabash et al. [IHEP-JINR Neutrino Detector Collab.], Measurement of $xF_3$, $F_2$ structure functions and Gross–Llewellyn–Smith sum rule with IHEP-JINR neutrino detector, Preprint JINR, E2-96-308, Dubna, 1996

[18] F. Bergsma et al. [CHARM Collab.], “Experimental study of the nucleon structure functions and of the gluon distribution from charged current neutrino and anti-neutrinos interactions”, Phys. Lett. B, 123 (1983), 269–275 | DOI

[19] W. C. Leung et al. [CCFR Collab.], “A measurement of the Gross–Llewellyn Smith sum rule from the CCFR $xF_3$ structure function”, Phys. Lett. B, 317 (1993), 655–659 | DOI

[20] J. H. Kim et al. [CCFR/NuTeV Collab.], “A Measurement of $\alpha_s(\mathcal{Q}^2)$ from the Gross–Llewellyn–Smith sum rule”, Phys. Rev. Lett., 81 (1998), 3595–3598 | DOI

[21] K. Abe et al., “Precision determination of the neutron spin structure function $g_1^n$”, Phys. Rev. Lett., 79 (1997), 26–30 | DOI

[22] P. L. Anthony et al., “Measurements of the $\mathcal{Q}^2$-dependence of the proton and neutron spin structure functions $g_1^p$ and $g_1^n$”, Phys. Lett. B, 493 (2000), 19–28 | DOI

[23] V. M. Braun, A. V. Kolesnichenko, “Power corrections to Bjorken and Gross–Llewellyn Smith sum rules in QCD”, Nucl. Phys. B, 283 (1987), 723 | DOI

[24] I. I. Balitsky, V. M. Braun, A. V. Kolesnichenko, “Power corrections $1/\mathcal{Q}^2$ to parton sum rules for deep inelastic scattering from polarized targets”, Phys. Lett. B, 242 (1990), 245–250 | DOI

[25] “Erratum to: I. I. Balitsky, V. M. Braun, A. V. Kolesnichenko, Power corrections $1/\mathcal{Q}^2$ to parton sum rules for deep inelastic scattering from polarized targets”, Phys. Lett. B, 318 (1993), 648–650 | DOI

[26] G. G. Ross, R. G. Roberts, “Improved QCD sum rule estimates of the higher twist contributions to polarized and unpolarized nucleon structure functions”, Phys. Lett. B, 322 (1994), 425–430 | DOI

[27] E. Stein et al., “QCD sum rule calculation of twist-three contributions to polarized nucleon structure functions”, Phys. Lett. B, 343 (1995), 369–376 | DOI

[28] J. Balla, M. V. Polyakov, C. Weiss, “Nucleon matrix elements of higher twist operators from the instanton vacuum”, Nucl. Phys. B, 510 (1998), 327–364

[29] J. Blumlein, H. Bottcher, “QCD Analysis of polarized deep inelastic scattering data”, Nucl. Phys. B, 841 (2010), 205–230 | DOI