Hermitian approximation of two exponents
Problemy fiziki, matematiki i tehniki, no. 1 (2012), pp. 97-100

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the asymptotic properties of diagonal Pade–Hermite approximants $\{\pi^{j}_{2n,2n}(z;e^{j\xi;})\}^{2}_{j=1}$ for a system consisting of functions $\{e^z,e^{2 z}\}$. In particular, we determine the asymptotic behavior of the differences $e^{jz} - \pi^j_{2n,2n}(z; e^{j\xi})$ for $j =1,2$ and $n \to\infty$ for any complex number $z$. The obtained results supplement research of Pade, Perron, Braess and A.I. Aptekarev dealing with the study of the convergence of joint Pade approximants for systems of exponents.
Keywords: perfect system of functions, asymptotic equality, Hermite integrals.
Mots-clés : joint Pade approximant, Pade–Hermite approximants
@article{PFMT_2012_1_a17,
     author = {N. V. Rjabchenko and A. P. Starovoitov and G. N. Kazimirov},
     title = {Hermitian approximation of two exponents},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {97--100},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2012_1_a17/}
}
TY  - JOUR
AU  - N. V. Rjabchenko
AU  - A. P. Starovoitov
AU  - G. N. Kazimirov
TI  - Hermitian approximation of two exponents
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2012
SP  - 97
EP  - 100
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2012_1_a17/
LA  - ru
ID  - PFMT_2012_1_a17
ER  - 
%0 Journal Article
%A N. V. Rjabchenko
%A A. P. Starovoitov
%A G. N. Kazimirov
%T Hermitian approximation of two exponents
%J Problemy fiziki, matematiki i tehniki
%D 2012
%P 97-100
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2012_1_a17/
%G ru
%F PFMT_2012_1_a17
N. V. Rjabchenko; A. P. Starovoitov; G. N. Kazimirov. Hermitian approximation of two exponents. Problemy fiziki, matematiki i tehniki, no. 1 (2012), pp. 97-100. http://geodesic.mathdoc.fr/item/PFMT_2012_1_a17/