Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2012_1_a17, author = {N. V. Rjabchenko and A. P. Starovoitov and G. N. Kazimirov}, title = {Hermitian approximation of two exponents}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {97--100}, publisher = {mathdoc}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2012_1_a17/} }
N. V. Rjabchenko; A. P. Starovoitov; G. N. Kazimirov. Hermitian approximation of two exponents. Problemy fiziki, matematiki i tehniki, no. 1 (2012), pp. 97-100. http://geodesic.mathdoc.fr/item/PFMT_2012_1_a17/
[1] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR | Zbl
[2] Dzh. Beiker ml., P. Greivs-Morris, Approksimatsii Pade, Mir, M., 1986 | MR
[3] K. Mahler, “Perfect systems”, Compositio mathematica, 19:2 (1968), 95–166 | MR | Zbl
[4] N. A. Jager, “Multidimensional Generalization of the Pade Table”, K. Nederl. Ak. Wetensch., Ser. A, 67 (1964), 192–249
[5] J. Coates, “On the algebraic approximation of functions”, K. Nederl. Ak. Wetensch., Ser. A, 69 (1966), 421–461 | MR | Zbl
[6] E. M. Nikishin, “O sisteme markovskikh funktsii”, Vestn. MGU. Seriya 1. Matematika. Mekhanika, 1979, no. 4, 60–63 | MR | Zbl
[7] A. I. Aptekarev, V. G. Lysov, “Sistemy markovskikh funktsii, generiruemye grafami, i asimptotika ikh approksimatsii Ermita–Pade”, Matem. sbornik, 201:2 (2010), 29–78 | DOI | MR | Zbl
[8] C. Hermite, “Sur la fonction exponentielle”, C.R. Akad. Sci. (Paris), 77 (1873), 18–293
[9] F. Klein, Elementarnaya matematika s tochki zreniya vysshei, v. 1, Nauka, M., 1933
[10] A. I. Aptekarev, “O skhodimosti ratsionalnykh approksimatsii k naboru eksponent”, Vestnik MGU. Seriya 1. Matematika. Mekhanika, 1981, no. 1, 68–74 | MR | Zbl
[11] H. Pade, “Memoire sur les developpement en fractions continues de la fonction exponential”, Ann Sci., Ecole Normale Sup. (3), 16 (1899), 394–426 | MR
[12] O. Perron, Die Lehre von den Kettenbrüchen, Teubner, Leipzig–Berlin, 1929 | Zbl
[13] D. Braess, “On the conjecture of Meinardus on rational approximation of $e^x$, II”, J. Approx. Theory, 40:4 (1984), 375–379 | DOI | MR | Zbl
[14] P. P. Petrusherv, V. A. Popov, Rational approximation of real function, Encyclopedia Math., Cambridge, 1987