On the smallest and the largest elements of the Lockett section of a fitting functor
Problemy fiziki, matematiki i tehniki, no. 1 (2012), pp. 69-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper analogues of the known in the theory of Fitting classes operators «$^*$», «$_ *$ » and the Lockett sections on the set of Fitting $\mathfrak{X}$-functors ($\mathfrak{X}$ is some non-empty Fitting class) are defined. By the Lockett section of a conjugate Fitting $\mathfrak{X}$-functor $f$ we mean the set $\mathrm{Locksec}(f) = \{g: g\text{ is a conjugate Fitting }\mathfrak{X}\text{-functor and }f^* = g^*\}$. It is proved that the Lockett section of a conjugate Fitting $\mathfrak{X}$-functor contains the largest element. Besides we describe conditions under which the Lockett section contains the smallest element.
Keywords: Lockett's operation, Lockett section, Fitting $\mathfrak{X}$-functor.
@article{PFMT_2012_1_a12,
     author = {E. A. Vit'ko},
     title = {On the smallest and the largest elements of the {Lockett} section of a fitting functor},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {69--74},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2012_1_a12/}
}
TY  - JOUR
AU  - E. A. Vit'ko
TI  - On the smallest and the largest elements of the Lockett section of a fitting functor
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2012
SP  - 69
EP  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2012_1_a12/
LA  - ru
ID  - PFMT_2012_1_a12
ER  - 
%0 Journal Article
%A E. A. Vit'ko
%T On the smallest and the largest elements of the Lockett section of a fitting functor
%J Problemy fiziki, matematiki i tehniki
%D 2012
%P 69-74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2012_1_a12/
%G ru
%F PFMT_2012_1_a12
E. A. Vit'ko. On the smallest and the largest elements of the Lockett section of a fitting functor. Problemy fiziki, matematiki i tehniki, no. 1 (2012), pp. 69-74. http://geodesic.mathdoc.fr/item/PFMT_2012_1_a12/

[1] F. P. Lockett, “The Fitting class $\mathfrak{F}^*$”, Math. Z., 137:2 (1974), 131–136 | DOI | MR | Zbl

[2] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992, 891 pp. | MR

[3] J. C. Beidleman, B. Brewster, P. Hauck, “Fittingfunktoren in endlichen auflösbaren Gruppen I”, Math. Z., 182 (1983), 359–384 | DOI | MR | Zbl

[4] J. C. Beidleman, B. Brewster, P. Hauck, “Fitting functors in finite solvable groups, II”, Math. Proc. Camb. Phil. Soc., 101 (1987), 37–55 | DOI | MR | Zbl

[5] J. C. Beidleman, M. P. Gallego, “Conjugate $\pi$-normally embedded fitting functors”, Rend. Sem. Math. Univ. Padova, 80 (1988), 65–82 | MR | Zbl

[6] J. C. Beidleman, P. Hauck, “Closure Properties for Fitting Functors”, Mh. Math., 108 (1989), 1–22 | DOI | MR | Zbl

[7] S. F. Kamornikov, M. V. Selkin, Podgruppovye funktory i klassy konechnykh grupp, Belarus. navuka, Minsk, 2003, 254 pp.

[8] Wenbin Guo, The Theory of Classes of Groups, Sci. Press-Kluwer Acad. Publ., Beijing–New York–Dordrecht–Boston–London, 2000, 258 pp. | MR