Properties of vectorial paraxial light beams. II. The non homogeneous polarization
Problemy fiziki, matematiki i tehniki, no. 1 (2012), pp. 11-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

The formalism for the description of the vector paraxial light beams to the beams with nonhomogeneous polarization is propagated. Simple expressions for polarization and energy flux density of electromagnetic field of the vector light beams with nonhomogeneous polarization of various types were discovered. New types of the vector paraxial light beams are featured. It is proved, that if any paraxial light beam with the nonhomogeneous polarization is spread out into two coherent circular polarized beams and the former are spread independently, then their streams of energy are parted and they are independent.
Keywords: paraxial beams, vector beams, light beams, polarizable properties, energy properties, nonhomogeneous polarization.
@article{PFMT_2012_1_a1,
     author = {S. S. Girgel},
     title = {Properties of vectorial paraxial light beams. {II.} {The} non homogeneous polarization},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {11--14},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2012_1_a1/}
}
TY  - JOUR
AU  - S. S. Girgel
TI  - Properties of vectorial paraxial light beams. II. The non homogeneous polarization
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2012
SP  - 11
EP  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2012_1_a1/
LA  - ru
ID  - PFMT_2012_1_a1
ER  - 
%0 Journal Article
%A S. S. Girgel
%T Properties of vectorial paraxial light beams. II. The non homogeneous polarization
%J Problemy fiziki, matematiki i tehniki
%D 2012
%P 11-14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2012_1_a1/
%G ru
%F PFMT_2012_1_a1
S. S. Girgel. Properties of vectorial paraxial light beams. II. The non homogeneous polarization. Problemy fiziki, matematiki i tehniki, no. 1 (2012), pp. 11-14. http://geodesic.mathdoc.fr/item/PFMT_2012_1_a1/

[1] A. M. Belskii, Optika svetovykh puchkov, BGU, Mn., 2000, 210 pp.

[2] A. M. Goncharenko, Gaussovy puchki sveta, Nauka i tekhnika, Mn., 1977, 144 pp. | Zbl

[3] Kh. Khaus, Volny i polya v optoelektronike, Mir, M., 1988, 432 pp.

[4] L. A. Vainshtein, Elektromagnitnye volny, Radio i svyaz, M., 1988, 440 pp.

[5] M. Born, E. Volf, Osnovy optiki, Nauka, M., 1970, 587 pp.

[6] S. S. Girgel, “Svoistva vektornykh paraksialnykh svetovykh puchkov. I: Odnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2011, no. 1 (6), 20–24 | Zbl

[7] F. I. Fedorov, Optika anizotropnykh sred, Izd-vo AN BSSR, Mn., 1976, 380 pp.

[8] L. W. Davis, G. Patsakos, “TM and TE electromagnetic beams in free space”, Optics Letters, 8:1 (1981), 22–23 | DOI

[9] Koichi Shimoda, “Vectorial analysis of the Gaussian beams of light”, J. Phys. Soc. Japan, 60:1 (1991), 141–144 | DOI | MR