Self-assembled nanoplasmonics
Problemy fiziki, matematiki i tehniki, no. 4 (2011), pp. 16-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

State-of-the-art plasmonic structures can be splitted into two classes depending on whether they were obtained by top-down or bottom-up processes. The former have been extensively studied but they remain to be large and simple in terms of feature size and architecture, respectively. The latter have only been made available recently and need much investigation of their near-field optical properties, yet they push the integration limit further and provide a new approach to complex architectures. Selfassembling of nanoparticles in complex superstructures is one of the suggested bottom-up approaches. We discuss the challenging problem of the light evanescent wave optical addressing in such structures and introduce a concept of multi-scale plasmonic architectures.
Keywords: sub-wavelength optics, nanophotonics, metal colloid, near-field optics, plasmonics, self-assembled nanostructures.
Mots-clés : nanostructures
@article{PFMT_2011_4_a2,
     author = {S. Viarbitskaya and E. Dujardin and C. Girard},
     title = {Self-assembled nanoplasmonics},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {16--18},
     publisher = {mathdoc},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2011_4_a2/}
}
TY  - JOUR
AU  - S. Viarbitskaya
AU  - E. Dujardin
AU  - C. Girard
TI  - Self-assembled nanoplasmonics
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2011
SP  - 16
EP  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2011_4_a2/
LA  - en
ID  - PFMT_2011_4_a2
ER  - 
%0 Journal Article
%A S. Viarbitskaya
%A E. Dujardin
%A C. Girard
%T Self-assembled nanoplasmonics
%J Problemy fiziki, matematiki i tehniki
%D 2011
%P 16-18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2011_4_a2/
%G en
%F PFMT_2011_4_a2
S. Viarbitskaya; E. Dujardin; C. Girard. Self-assembled nanoplasmonics. Problemy fiziki, matematiki i tehniki, no. 4 (2011), pp. 16-18. http://geodesic.mathdoc.fr/item/PFMT_2011_4_a2/

[1] C. Girard, E. Dujardin, “Near-field optical properties of top-down and bottom-up nanostructures”, Journal of Optics A: Pure and Applied Optics, 8 (2006), 73–86 | DOI

[2] H. Ditlbacher et al., “Silver nanowires as surface plasmon resonators”, Physical review letters, 95 (2005), 257403 | DOI

[3] C. Girard et al., “Shaping and manipulation of light fields with bottom-up plasmonic structures”, New Journal of Physics, 10 (2008), 105016 | DOI

[4] T. Tlusty, S. A. Safran, “Entropic networks in colloidal self-assembly”, Philosophical Transactions of the Royal Society A, 359 (2001), 879–881 | DOI

[5] S. Lin et al., “One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain network”, Advanced Materials, 17 (2005), 2553–2559 | DOI

[6] J.-C. Weeber et al., “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light”, Physical Review B, 60 (1999), 9061 | DOI

[7] R. M. Dickson, L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires”, Journal of Physical Chemistry B, 104 (2000), 6095 | DOI

[8] S. A. Maier et al., “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides”, Nature Materials, 2 (2003), 229–232 | DOI

[9] A. L. Pyayt et al., “Integration of photonic and silver nanowire plasmonic waveguides”, Nature Nanotechnology, 3 (2008), 660–665 | DOI

[10] P. Ghenuche et al., “Spectroscopic mode mapping of resonant plasmon nanoantennas”, Physical Review Letters, 101 (2008), 116805 | DOI