On finite groups with generally subnormal sylow subgroups
Problemy fiziki, matematiki i tehniki, no. 4 (2011), pp. 86-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{F}$ be a non-empty formation. A subgroup $H$ of group $G$ is called $\mathfrak{F}$-subnormal in $G$ if either $H = G$ or there is a chain of subgroups $H = H_0 \subset H_1 \subset \dots \subset H_n = G$ such that $H_i^{\mathfrak{F}} \subseteq H_{i-1}$ for every $i = 1, \dots , n$. In the work the class of groups $w\mathfrak{F} = (G \mid\pi(G) \subseteq \pi(\mathfrak{F})$ and every Sylow subgroup of $G$ is $\mathfrak{F}$-subnormal in $G)$ are studied. Properties of the class $w\mathfrak{F}$ are obtained. In particular, for hereditary saturated formation $\mathfrak{F}$ it is proved that the class $w\mathfrak{F}$ is a hereditary saturated formation. Necessary and sufficient conditions are found, at which $w\mathfrak{F} = F$.
Keywords: finite group, Sylow subgroup, $\mathfrak{F}$-subnormal subgroup, hereditary formation, saturated formation.
@article{PFMT_2011_4_a16,
     author = {A. F. Vasil'ev and T. I. Vasilyeva},
     title = {On finite groups with generally subnormal sylow subgroups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {86--91},
     publisher = {mathdoc},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2011_4_a16/}
}
TY  - JOUR
AU  - A. F. Vasil'ev
AU  - T. I. Vasilyeva
TI  - On finite groups with generally subnormal sylow subgroups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2011
SP  - 86
EP  - 91
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2011_4_a16/
LA  - ru
ID  - PFMT_2011_4_a16
ER  - 
%0 Journal Article
%A A. F. Vasil'ev
%A T. I. Vasilyeva
%T On finite groups with generally subnormal sylow subgroups
%J Problemy fiziki, matematiki i tehniki
%D 2011
%P 86-91
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2011_4_a16/
%G ru
%F PFMT_2011_4_a16
A. F. Vasil'ev; T. I. Vasilyeva. On finite groups with generally subnormal sylow subgroups. Problemy fiziki, matematiki i tehniki, no. 4 (2011), pp. 86-91. http://geodesic.mathdoc.fr/item/PFMT_2011_4_a16/

[1] T. Hawkes, “On formation subgroups of a finite soluble group”, J. London Math. Soc., 44 (1969), 243–250 | DOI | MR | Zbl

[2] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp. | MR | Zbl

[3] S. F. Kamornikov, M. V. Selkin, Podgruppovye funktory i klassy konechnykh grupp, Belarus. navuka, Minsk, 2003, 254 pp.

[4] A. Ballester-Bolinches, L. M. Ezquerro, Classes of Finite Groups, Springer, 2006, 385 pp. | MR

[5] A. F. Vasilev, “O vliyanii primarnykh $\mathfrak{F}$-subnormalnykh podgrupp na stroenie gruppy”, Voprosy algebry, 1995, no. 8, 31–39

[6] T. I. Vasileva, A. I. Prokopenko, “Konechnye gruppy s formatsionno subnormalnymi podgruppami”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2006, no. 3, 25–30 | MR

[7] A. F. Vasilev, T. I. Vasileva, V. N. Tyutyanov, “O konechnykh gruppakh sverkhrazreshimogo tipa”, Sib. mat. zhurn., 51:6 (2010), 1270–1281 | MR

[8] A. F. Vasilev, T. I. Vasileva, V. N. Tyutyanov, “O konechnykh gruppakh, blizkikh k sverkhrazreshimym gruppam”, Problemy fiziki, matematiki i tekhniki, 2010, no. 2 (3), 21–27

[9] V. N. Semenchuk, S. N. Shevchuk, “Kharakterizatsiya klassov konechnykh grupp s pomoschyu obobschenno subnormalnykh silovskikh podgrupp”, Matem. zametki, 89:1 (2011), 104–108 | DOI | MR | Zbl

[10] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992, 891 pp. | MR

[11] R. Griess, P. Schmid, “The Frattini module”, Arch. Math., 30 (1978), 256–266 | DOI | MR | Zbl

[12] W. Gaschütz, “Über die modularen Darstellungen endlicher Gruppen, die von freien Gruppen induziert warden”, Math. Z., 60 (1954), 274–286 | DOI | MR