Finite groups with given maximal chains of length $\le 3$
Problemy fiziki, matematiki i tehniki, no. 3 (2011), pp. 39-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

A description of a finite group with the property that every its maximal chain of length 3 contains a proper $S$-quasinormal subgroup, and a description of a finite group with the property that every its 3-maximal subgroup is subnormal ($S$-quasinormal) are obtained.
Keywords: Sylow subgroup, Schmidt group, $n$-maximal subgroup, nilpotent group, maximal chain of length $n$, $S$-quasinormal subgroup, subnormal subgroup.
Mots-clés : soluble group
@article{PFMT_2011_3_a6,
     author = {D. P. Andreeva and A. N. Skiba},
     title = {Finite groups with given maximal chains of length $\le 3$},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {39--49},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2011_3_a6/}
}
TY  - JOUR
AU  - D. P. Andreeva
AU  - A. N. Skiba
TI  - Finite groups with given maximal chains of length $\le 3$
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2011
SP  - 39
EP  - 49
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2011_3_a6/
LA  - ru
ID  - PFMT_2011_3_a6
ER  - 
%0 Journal Article
%A D. P. Andreeva
%A A. N. Skiba
%T Finite groups with given maximal chains of length $\le 3$
%J Problemy fiziki, matematiki i tehniki
%D 2011
%P 39-49
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2011_3_a6/
%G ru
%F PFMT_2011_3_a6
D. P. Andreeva; A. N. Skiba. Finite groups with given maximal chains of length $\le 3$. Problemy fiziki, matematiki i tehniki, no. 3 (2011), pp. 39-49. http://geodesic.mathdoc.fr/item/PFMT_2011_3_a6/

[1] L. Redei, “Ein Satz uber die endlichen einfachen Gruppen”, Acta Math., 84 (1950), 129–153 | DOI | MR | Zbl

[2] B. Huppert, “Normalteiler and maximal Untergruppen endlicher gruppen”, Math. Z., 60 (1954), 409–434 | DOI | MR | Zbl

[3] L. Ya. Polyakov, Konechnye gruppy s perestanovochnymi podgruppami, Nauka i tekhnika, Minsk, 1966, 75–88 | MR

[4] R. K. Agrawal, “Generalized center and hypercenter of a finite group”, Proc. Amer. Math. Soc., 54 (1976), 13–21 | DOI | MR

[5] M. Assad, “Finite groups some whose $n$-maximal subgroups are normal”, Acta Math. Hung., 54:1 (1989), 9–27 | DOI | MR

[6] P. Flavell, “Overgroups of second maximal subgroups”, Arch. Math., 64 (1995), 277–282 | DOI | MR | Zbl

[7] A. Mann, “Finite groups whose $n$-maximal subgroups are subnormal”, Trans. Amer. Math. Soc., 132 (1968), 395–409 | MR | Zbl

[8] Li Shirong, “Finite non-nilpotent groups all of whose second maximal subgroups are $TI$-groups”, Mathematical Proccedings of the Royal Irish Academy, 100A:1 (2000), 65–71 | MR | Zbl

[9] X. Y. Guo, K. P. Shum, “Cover-avoidance properties and the structure of finite groups”, Journal of Pure and Applied Algebra, 181 (2003), 297–308 | DOI | MR

[10] W. Guo, K. P. Shum, A. N. Skiba, “$X$-semipermutable subgroups of finite groups”, J. Algebra, 315 (2007), 31–41 | DOI | MR | Zbl

[11] Li Baojun, A. N. Skiba, “New characterizations of finite supersoluble groups”, Science in China Serias A: Mathematics, 50:1 (2008), 827–841 | MR

[12] W. Guo, A. N. Skiba, “Finite groups with given $s$-embedded and $n$-embedded subgroups”, J. Algebra, 321 (2009), 2843–2860 | DOI | MR | Zbl

[13] W. Guo, H. V. Legchekova, A. N. Skiba, “The structure of finite non-nilpotent groups in which every 2-maximal subgroup permutes with all 3-maximal subgroups”, Communications in Algebra, 37 (2009), 2446–2456 | DOI | MR | Zbl

[14] V. Go, E. V. Legchekova, A. N. Skiba, “Konechnye gruppy, v kotorykh lyubaya 3-maksimalnaya podgruppa perestanovochna so vsemi maksimalnymi podgruppami”, Matem. zametki, 86:3 (2009), 350–359 | DOI | MR | Zbl

[15] D. P. Kovalkova, A. N. Skiba, “Konechnye gruppy s zadannymi sistemami $S$-kvazinormalnykh podgrupp”, Ves. Nats. akad. navuk Belarusi. Ser. fiz.-mat. navuk, 2010, no. 3, 35–43 | MR

[16] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992 | MR

[17] O. Kegel, “Sylow-Gruppen und Subnormalteiler endlicher Gruppen”, Math. Z., 87 (1962), 205–221 | DOI | MR

[18] P. Schmid, “Subgroups Permutable with All Sylow Subgroups”, J. Algebra, 207:1 (1998), 285–293 | DOI | MR | Zbl

[19] D. Gorenstein, Finite groups, Chelsea, New York, 1980 | MR | Zbl

[20] Yu. V. Lutsenko, A. N. Skiba, “O konechnykh gruppakh, v kotorykh kazhdaya 2-maksimalnaya ili 3-maksimalnaya podgruppa obobschenno perestanovochna so vsemi silovskimi podgruppami”, Ukr. mat. zhurnal, 61:12 (2009), 1630–1639 | MR | Zbl

[21] B. Huppert, Endliche Gruppen, v. I, Springer, Berlin–Heidelberg–New York, 1967 | MR | Zbl