Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2011_3_a12, author = {A. N. Starovoitov}, title = {Queueing system with batch arrivals, batch service and disasters}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {78--80}, publisher = {mathdoc}, number = {3}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2011_3_a12/} }
A. N. Starovoitov. Queueing system with batch arrivals, batch service and disasters. Problemy fiziki, matematiki i tehniki, no. 3 (2011), pp. 78-80. http://geodesic.mathdoc.fr/item/PFMT_2011_3_a12/
[1] G. Jain, K. Sigman, “A Pollaczeek–Khinchine formula for $\mathrm{M/G/1}$ queues with disasters”, J. Appl. Prob., 1996, no. 33, 1191–1200 | DOI | MR | Zbl
[2] A. Chen, E. Renshaw, “The $\mathrm{M/M/1}$ queue with mass exodus and mass arrivals when empty”, J. Appl. Prob., 1997, no. 34, 192–207 | DOI | MR | Zbl
[3] O. V. Semenova, “A queueing system with two operation modes and a disaster flow: its stationary state probability distribution”, Automation and Remote Control, 63:10 (2002), 1597–1608 | DOI | MR | Zbl
[4] A. Dudin, S. Nishimura, “A $\mathrm{BMAP/SM/1}$ queueing system with markovian arrival input of disasters”, J. Appl. Prob., 36 (1999), 868–881 | DOI | MR | Zbl
[5] A. Dudin, O. Semenova, “A stable algorithm for stationary distribution calculation for a $\mathrm{BMAP/SM/1}$ queueing system with markovian arrival input of disasters”, J. Appl. Prob., 41 (2004), 547–556 | DOI | MR | Zbl
[6] M. Miyazawa, P. G. Taylor, “Geometric product-form distribution for a queueing network with non-standard batch arrivals and batch transfers”, Adv. Appl. Prob., 29:2 (1997), 1–22 | DOI | MR
[7] Yu. S. Boyarovich, “Statsionarnoe raspredelenie zamknutoi seti massovogo obsluzhivaniya s gruppovymi perekhodami zayavok”, Avtomatika i telemekhanika, 2009, no. 11, 80–86 | MR | Zbl
[8] Yu. V. Malinkovskii, E. V. Korobeinikova, “Kharakterizatsiya statsionarnogo raspredeleniya setei s gruppovymi peremescheniyami v forme proizvedeniya smeschennykh geometricheskikh raspredelenii”, Avtomatika i telemekhanika, 2010, no. 12, 43–56 | MR | Zbl
[9] V. A. Ivnitskii, Teoriya setei massovogo obsluzhivaniya, Fizmatlit, M., 2004, 772 pp.
[10] F. P. Kelly, Reversibility and stochastic networks, Wiley, N.Y., 1979, 230 pp. | MR