Quantum and relativistic effects for two particle systems with the cornell potential
Problemy fiziki, matematiki i tehniki, no. 3 (2011), pp. 7-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical method for bound state equations with the Cornell potential in momentum space is represented. A new quadrature formula was obtained. The formula can be used for solving integral equations and for numerical integral computations as well. Some effects for two particle quantum systems with the Cornell potential were observed. For the case of non-relativistic Schrodinger equation with the Cornell potential the exploration of wave functions' behavior near the critical value of the Coulomb potential parameter was provided. A curve that characterizes the critical value dependence from the linear part parameter of potential was plotted.
Keywords: bound states, momentum space, Cornell potential, collapse, wave function
Mots-clés : quadrature formula, Schodinger equation.
@article{PFMT_2011_3_a0,
     author = {V. V. Andreev and K. S. Babich},
     title = {Quantum and relativistic effects for two particle systems with the cornell potential},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {7--14},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2011_3_a0/}
}
TY  - JOUR
AU  - V. V. Andreev
AU  - K. S. Babich
TI  - Quantum and relativistic effects for two particle systems with the cornell potential
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2011
SP  - 7
EP  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2011_3_a0/
LA  - ru
ID  - PFMT_2011_3_a0
ER  - 
%0 Journal Article
%A V. V. Andreev
%A K. S. Babich
%T Quantum and relativistic effects for two particle systems with the cornell potential
%J Problemy fiziki, matematiki i tehniki
%D 2011
%P 7-14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2011_3_a0/
%G ru
%F PFMT_2011_3_a0
V. V. Andreev; K. S. Babich. Quantum and relativistic effects for two particle systems with the cornell potential. Problemy fiziki, matematiki i tehniki, no. 3 (2011), pp. 7-14. http://geodesic.mathdoc.fr/item/PFMT_2011_3_a0/

[1] T. Udem et al., “Phase-Coherent Measurement of the Hydrogen $1S-2S$ Transition Frequency with an Optical Frequency Interval Divider Chain”, Phys. Rev. Lett., 79:14, Oct. (1997), 2646–2649 | DOI

[2] W. Liu et al., “High precision measurements of the ground state hyperfine structure interval of muonium and of the muon magnetic moment”, Phys. Rev. Lett., 82 (1999), 711–714 | DOI

[3] H. A. Bete, E. E. Salpeter, Quantum Mechanics of One and Two-Electron Atoms, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1957, 1232–1242 | MR

[4] D. Eyre, J. P. Vary, “Solving momentum space integral equations for quarkonia spectra with confining potentials”, Phys. Rev. D, 34 (1986), 3467–3471 | DOI

[5] W. Lucha, H. Rupprecht, F. F. Schoberl, “Relativistic treatment of fermion anti-fermion bound states”, Phys. Rev. D, 44 (1991), 242–249 | DOI

[6] A. Tang, J. W. Norbury, “The Nyström plus correction method for solving bound state equations in momentum space”, Phys. Rev. E, 63 (2001), 066703 | DOI

[7] J. W. Norbury, D. E. Kahana, K. Maung Maung, “Confining potential in momentum space”, Can. J. Phys., 70 (1992), 86–89 | DOI

[8] E. E. Salpeter, “Mass-corrections to the fine structure of Hydrogen-like atoms”, Phys. Rev., 87:2 (1952), 328–343 | DOI | Zbl

[9] S. Bielefeld, J. Ihmels, H.-C. Pauli, On technically solving an effective QCD Hamiltonian, 1999, arXiv: (Date of access: 14.01.2008) hep-ph/9904241

[10] C. Savkli, F. Gross, “Quark-antiquark bound states in the relativistic spectator formalism”, Phys. Rev. C, 63 (2001), 035208 | DOI

[11] M. van Iersel, C. van der Burgh, B. L. Bakker, Techniques for solving bound state problems, 2000, arXiv: (Date of access: 24.01.2005) hep-ph/0010243

[12] A. Deloff, “Quarkonium bound-state problem in momentum space revisited”, Annals Phys., 322 (2007), 2315–2326 | DOI | MR | Zbl

[13] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, 4-e pererabotannoe izd., Gos. izd-vo fiz.-mat. literatury, M., 1963, 1110 pp. | MR

[14] A. Deloff, “Semi-spectral Chebyshev method in Quantum Mechanics”, Annals Phys., 322 (2007), 1373–1419 | DOI | MR | Zbl

[15] V. V. Andreev, K. S. Babich, “Novaya kvadraturnaya formula dlya integralov s osobennostyami v zadachakh na svyazannye sostoyaniya”, Kovariantnye metody v teoreticheskoi fizike. Fizika elementarnykh chastits i teoriya otnositelnosti, 7, Institut fiziki NAN Belarusi, Minsk, 2011, 216–222

[16] V. V. Andreev, V. Andreev, T. V. Shishkina, “Vodorodopodobnaya sistema v relyativistskoi gamiltonovoi dinamike”, Izvestiya GGU im. F. Skoriny, 2006, no. 6 (39), chast 1, 13–17 | MR

[17] D. Kang, E. Won, “Precise Numerical Solutions of Potential Problems Using Crank–Nicholson Method”, J. Comput. Phys., 227 (2008), 2970–2976 | DOI | Zbl

[18] I. Herbst, “Spectral Theory of the Operator $\sqrt{p^2+m^2}-\frac{ze^2}2$”, Commun. Math. Phys., 53 (1977), 285–294 | DOI | MR | Zbl

[19] W. Lucha, F. F. Schoberl, “Relativistic Coulomb problem: Energy levels at the critical coupling constant analytically”, Phys. Lett. B, 387 (1996), 573–576 | DOI

[20] S. Godfrey, N. Isgur, “Mesons in a relativized quark model with chromodynamics”, Phys. Rev. D, 32 (1985), 189–231 | DOI | MR

[21] V. V. Andreev, Puankare-kovariantnye modeli dvukhchastichnykh sistem s kvantovopolevymi potentsialami, UO «Gomelskii gosudarstvennyi universitet im. F. Skoriny», Gomel, 2008, 294 pp.