Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2011_3_a0, author = {V. V. Andreev and K. S. Babich}, title = {Quantum and relativistic effects for two particle systems with the cornell potential}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {7--14}, publisher = {mathdoc}, number = {3}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2011_3_a0/} }
TY - JOUR AU - V. V. Andreev AU - K. S. Babich TI - Quantum and relativistic effects for two particle systems with the cornell potential JO - Problemy fiziki, matematiki i tehniki PY - 2011 SP - 7 EP - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2011_3_a0/ LA - ru ID - PFMT_2011_3_a0 ER -
V. V. Andreev; K. S. Babich. Quantum and relativistic effects for two particle systems with the cornell potential. Problemy fiziki, matematiki i tehniki, no. 3 (2011), pp. 7-14. http://geodesic.mathdoc.fr/item/PFMT_2011_3_a0/
[1] T. Udem et al., “Phase-Coherent Measurement of the Hydrogen $1S-2S$ Transition Frequency with an Optical Frequency Interval Divider Chain”, Phys. Rev. Lett., 79:14, Oct. (1997), 2646–2649 | DOI
[2] W. Liu et al., “High precision measurements of the ground state hyperfine structure interval of muonium and of the muon magnetic moment”, Phys. Rev. Lett., 82 (1999), 711–714 | DOI
[3] H. A. Bete, E. E. Salpeter, Quantum Mechanics of One and Two-Electron Atoms, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1957, 1232–1242 | MR
[4] D. Eyre, J. P. Vary, “Solving momentum space integral equations for quarkonia spectra with confining potentials”, Phys. Rev. D, 34 (1986), 3467–3471 | DOI
[5] W. Lucha, H. Rupprecht, F. F. Schoberl, “Relativistic treatment of fermion anti-fermion bound states”, Phys. Rev. D, 44 (1991), 242–249 | DOI
[6] A. Tang, J. W. Norbury, “The Nyström plus correction method for solving bound state equations in momentum space”, Phys. Rev. E, 63 (2001), 066703 | DOI
[7] J. W. Norbury, D. E. Kahana, K. Maung Maung, “Confining potential in momentum space”, Can. J. Phys., 70 (1992), 86–89 | DOI
[8] E. E. Salpeter, “Mass-corrections to the fine structure of Hydrogen-like atoms”, Phys. Rev., 87:2 (1952), 328–343 | DOI | Zbl
[9] S. Bielefeld, J. Ihmels, H.-C. Pauli, On technically solving an effective QCD Hamiltonian, 1999, arXiv: (Date of access: 14.01.2008) hep-ph/9904241
[10] C. Savkli, F. Gross, “Quark-antiquark bound states in the relativistic spectator formalism”, Phys. Rev. C, 63 (2001), 035208 | DOI
[11] M. van Iersel, C. van der Burgh, B. L. Bakker, Techniques for solving bound state problems, 2000, arXiv: (Date of access: 24.01.2005) hep-ph/0010243
[12] A. Deloff, “Quarkonium bound-state problem in momentum space revisited”, Annals Phys., 322 (2007), 2315–2326 | DOI | MR | Zbl
[13] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, 4-e pererabotannoe izd., Gos. izd-vo fiz.-mat. literatury, M., 1963, 1110 pp. | MR
[14] A. Deloff, “Semi-spectral Chebyshev method in Quantum Mechanics”, Annals Phys., 322 (2007), 1373–1419 | DOI | MR | Zbl
[15] V. V. Andreev, K. S. Babich, “Novaya kvadraturnaya formula dlya integralov s osobennostyami v zadachakh na svyazannye sostoyaniya”, Kovariantnye metody v teoreticheskoi fizike. Fizika elementarnykh chastits i teoriya otnositelnosti, 7, Institut fiziki NAN Belarusi, Minsk, 2011, 216–222
[16] V. V. Andreev, V. Andreev, T. V. Shishkina, “Vodorodopodobnaya sistema v relyativistskoi gamiltonovoi dinamike”, Izvestiya GGU im. F. Skoriny, 2006, no. 6 (39), chast 1, 13–17 | MR
[17] D. Kang, E. Won, “Precise Numerical Solutions of Potential Problems Using Crank–Nicholson Method”, J. Comput. Phys., 227 (2008), 2970–2976 | DOI | Zbl
[18] I. Herbst, “Spectral Theory of the Operator $\sqrt{p^2+m^2}-\frac{ze^2}2$”, Commun. Math. Phys., 53 (1977), 285–294 | DOI | MR | Zbl
[19] W. Lucha, F. F. Schoberl, “Relativistic Coulomb problem: Energy levels at the critical coupling constant analytically”, Phys. Lett. B, 387 (1996), 573–576 | DOI
[20] S. Godfrey, N. Isgur, “Mesons in a relativized quark model with chromodynamics”, Phys. Rev. D, 32 (1985), 189–231 | DOI | MR
[21] V. V. Andreev, Puankare-kovariantnye modeli dvukhchastichnykh sistem s kvantovopolevymi potentsialami, UO «Gomelskii gosudarstvennyi universitet im. F. Skoriny», Gomel, 2008, 294 pp.