On internal symmetries of the Dirac equation in graphene
Problemy fiziki, matematiki i tehniki, no. 2 (2011), pp. 11-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

The internal symmetries of massless and massive Dirac equations in space-time $2+1$ are investigated. It is shown that the massless Dirac equation has 12-parameter symmetry group which as a subgroup contains 10-parameter group Lee $\mathrm{SO}(3,2)$. The massive equation $(m \ne 0)$ has the symmetry group $\operatorname{SO}(2,2)$.
Keywords: internal symmetry, Dirac field, generators, invariance.
Mots-clés : group
@article{PFMT_2011_2_a1,
     author = {P. P. Andrusevich and V. A. Pletyukhov and V. I. Strazhev},
     title = {On internal symmetries of the {Dirac} equation in graphene},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {11--14},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2011_2_a1/}
}
TY  - JOUR
AU  - P. P. Andrusevich
AU  - V. A. Pletyukhov
AU  - V. I. Strazhev
TI  - On internal symmetries of the Dirac equation in graphene
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2011
SP  - 11
EP  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2011_2_a1/
LA  - ru
ID  - PFMT_2011_2_a1
ER  - 
%0 Journal Article
%A P. P. Andrusevich
%A V. A. Pletyukhov
%A V. I. Strazhev
%T On internal symmetries of the Dirac equation in graphene
%J Problemy fiziki, matematiki i tehniki
%D 2011
%P 11-14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2011_2_a1/
%G ru
%F PFMT_2011_2_a1
P. P. Andrusevich; V. A. Pletyukhov; V. I. Strazhev. On internal symmetries of the Dirac equation in graphene. Problemy fiziki, matematiki i tehniki, no. 2 (2011), pp. 11-14. http://geodesic.mathdoc.fr/item/PFMT_2011_2_a1/

[1] E. V. Gorbar et al., Magnetic field driven metal-insulator phase transition in planar systems, 26 Aug 2002, arXiv: cond-mat/0202422v3

[2] V. P. Gusynin, S. G. Sharapov, J. P. Carbotte, AC Conductivity of graphene: from tight-binding model to $2+1$-dimensional quantum electrodynamics, 27 Nov 2007, arXiv: 0706.3016v2 [cond-mat.mess-hall]

[3] V. A. Pletyukhov, V. I. Strazhev, “Veschestvennoe pole Diraka–Kelera i dirakovskie chastitsy”, Vestnik BGU. Ceriya 1, 2009, no. 2, 3–7

[4] V. A. Pletyukhov, V. I. Strazhev, P. P. Andrusevich, “Vnutrennyaya simmetriya vosmikomponentnogo dirakovskogo polya”, Vestsi NANB, ser. fiz.-mat. navuk, 2010, no. 4, 89–94 | MR

[5] W. Pauli, “On the conservation of the lepton charge”, Nuovo Cim., 6:1 (1957), 204–215 | DOI | MR | Zbl

[6] F. Gürsey, “Connection of charge independence and barion number conservation with the Pauli transformation”, Nuovo Cim., 8 (1958), 411–415 | DOI

[7] K. Nishidzhima, Fundamentalnye chastitsy, Mir, M., 1965, 462 pp.

[8] V. I. Strazhev, P. L. Shkolnikov, “O gruppe zaryadovoi simmetrii relyativistskikh volnovykh uravnenii”, Izvestiya vuzov. Fizika, 1981, no. 11, 115–117