On one class of finite supersoluble groups
Problemy fiziki, matematiki i tehniki, no. 1 (2011), pp. 62-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following theorem is proved. Theorem. If in a non-identity finite group $G$ every primitive subgroup has a prime power index, then $G=[D]H$, where $D$ and $H$ are Hall nilpotent subgroups of $G$ and $D$ coincides with the $\mathfrak{N}$-residual $G^{\mathfrak{N}}$ of $G$.
Keywords: primitive subgroups, finite group, supersoluble group, nilpotent group.
Mots-clés : soluble group
@article{PFMT_2011_1_a9,
     author = {N. S. Kosenok},
     title = {On one class of finite supersoluble groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {62--64},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2011_1_a9/}
}
TY  - JOUR
AU  - N. S. Kosenok
TI  - On one class of finite supersoluble groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2011
SP  - 62
EP  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2011_1_a9/
LA  - ru
ID  - PFMT_2011_1_a9
ER  - 
%0 Journal Article
%A N. S. Kosenok
%T On one class of finite supersoluble groups
%J Problemy fiziki, matematiki i tehniki
%D 2011
%P 62-64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2011_1_a9/
%G ru
%F PFMT_2011_1_a9
N. S. Kosenok. On one class of finite supersoluble groups. Problemy fiziki, matematiki i tehniki, no. 1 (2011), pp. 62-64. http://geodesic.mathdoc.fr/item/PFMT_2011_1_a9/

[1] B. Huppert, Endliche Gruppen, v. I, Springer-Verlag, Berlin–Heidelberg–New York, 1967, 793 pp. | MR | Zbl

[2] Chunikhin S. A., Shemetkov L. A., “Konechnye gruppy”, Algebra. Topologiya. Geometriya. 1969, Itogi nauki VINITI AN SSSR, M, 1971, 64–65 | MR

[3] D. L. Johnson, “A note on supersoluble groups”, Canad. J. Math., 23:3 (1971), 562–564 | DOI | MR | Zbl

[4] Y. Wang, “$c$-normality of groups and its properties”, J. Algebra, 1996, no. 180, 954–965 | DOI | MR | Zbl

[5] Kosenok N. S., Ryzhik V. N., “Nekotorye kriterii sverkhrazreshimosti konechnykh grupp”, Izvestiya Gomelskogo gosudarstvennogo universiteta imeni F. Skoriny, 2002, no. 5 (14), Voprosy algebry-18, 68–73 | Zbl

[6] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp. | MR | Zbl

[7] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992, 889 pp. | MR