On one class of finite supersoluble groups
Problemy fiziki, matematiki i tehniki, no. 1 (2011), pp. 62-64

Voir la notice de l'article provenant de la source Math-Net.Ru

The following theorem is proved. Theorem. If in a non-identity finite group $G$ every primitive subgroup has a prime power index, then $G=[D]H$, where $D$ and $H$ are Hall nilpotent subgroups of $G$ and $D$ coincides with the $\mathfrak{N}$-residual $G^{\mathfrak{N}}$ of $G$.
Keywords: primitive subgroups, finite group, supersoluble group, nilpotent group.
Mots-clés : soluble group
@article{PFMT_2011_1_a9,
     author = {N. S. Kosenok},
     title = {On one class of finite supersoluble groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {62--64},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2011_1_a9/}
}
TY  - JOUR
AU  - N. S. Kosenok
TI  - On one class of finite supersoluble groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2011
SP  - 62
EP  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2011_1_a9/
LA  - ru
ID  - PFMT_2011_1_a9
ER  - 
%0 Journal Article
%A N. S. Kosenok
%T On one class of finite supersoluble groups
%J Problemy fiziki, matematiki i tehniki
%D 2011
%P 62-64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2011_1_a9/
%G ru
%F PFMT_2011_1_a9
N. S. Kosenok. On one class of finite supersoluble groups. Problemy fiziki, matematiki i tehniki, no. 1 (2011), pp. 62-64. http://geodesic.mathdoc.fr/item/PFMT_2011_1_a9/