Criteria of $p$-supersolubility and supersolubility of finite groups
Problemy fiziki, matematiki i tehniki, no. 1 (2011), pp. 57-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group, $A$ a subgroup of $G$. Then we say that $A$ is generalized quasinormal in $G$ if $A$ either covers or avoids every maximal pair $(K,H)$ of $G$. We say that $A$ is $m$-supplemented in $G$ if $G$ has a subgroup $T$ and a generalized quasinormal subgroup $C$ such that $G = AT$ and $T \cap A \le C \le A$. Based on these concepts new characterizations of finite $p$-supersoluble and supersoluble groups are obtained.
Mots-clés : maximal pair
Keywords: generalized quasinormal subgroup, $m$-supplemented subgroup, $p$-supersoluble group, supersoluble group.
@article{PFMT_2011_1_a8,
     author = {V. A. Kovaleva and A. N. Skiba},
     title = {Criteria of $p$-supersolubility and supersolubility of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {57--61},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2011_1_a8/}
}
TY  - JOUR
AU  - V. A. Kovaleva
AU  - A. N. Skiba
TI  - Criteria of $p$-supersolubility and supersolubility of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2011
SP  - 57
EP  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2011_1_a8/
LA  - ru
ID  - PFMT_2011_1_a8
ER  - 
%0 Journal Article
%A V. A. Kovaleva
%A A. N. Skiba
%T Criteria of $p$-supersolubility and supersolubility of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2011
%P 57-61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2011_1_a8/
%G ru
%F PFMT_2011_1_a8
V. A. Kovaleva; A. N. Skiba. Criteria of $p$-supersolubility and supersolubility of finite groups. Problemy fiziki, matematiki i tehniki, no. 1 (2011), pp. 57-61. http://geodesic.mathdoc.fr/item/PFMT_2011_1_a8/

[1] V. A. Kovaleva, A. N. Skiba, “Konechnye gruppy s obobschennym usloviem pokrytiya i izolirovaniya dlya podgrupp”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2009, no. 2 (53), 145–149 | MR

[2] V. A. Kovaleva, A. N. Skiba, “Kharakterizatsii konechnykh razreshimykh grupp po svoistvam obobschennogo pokrytiya i izolirovaniya dlya podgrupp”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2009, no. 3 (54), 200–206 | Zbl

[3] O. Ore, “Contributions in the theory of groups of finite order”, Duke Math. J., 1939, no. 5, 431–460 | DOI | MR

[4] S. E. Stonehewer, “Permutable subgroups in Infinite Groups”, Math. Z., 1972, no. 125, 1–16 | DOI | MR | Zbl

[5] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992 | MR

[6] Y. Wang, “Finite Groups with Some Subgroups of Sylow Subgroups $c$-Supplemented”, J. Algebra, 2000, no. 224, 464–478 | MR

[7] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978 | MR | Zbl

[8] H. Wielandt, Subnormal subgroups and permutation groups, Lectures given at the Ohio State University, Columbus, Ohio, 1971

[9] B. Huppert, Endliche Gruppen, v. I, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl

[10] J. Buckley, “Finite groups whose minimal subgroups are normal”, Math. Z., 1970, no. 15, 15–17 | DOI | MR | Zbl

[11] A. Ballester-Bolinches, X. Y. Guo, “On complemented subgroups of finite groups”, Arch. Math., 1999, no. 72, 161–166 | DOI | MR | Zbl