Keywords: generalized quasinormal subgroup, $m$-supplemented subgroup, $p$-supersoluble group, supersoluble group.
@article{PFMT_2011_1_a8,
author = {V. A. Kovaleva and A. N. Skiba},
title = {Criteria of $p$-supersolubility and supersolubility of finite groups},
journal = {Problemy fiziki, matematiki i tehniki},
pages = {57--61},
year = {2011},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PFMT_2011_1_a8/}
}
V. A. Kovaleva; A. N. Skiba. Criteria of $p$-supersolubility and supersolubility of finite groups. Problemy fiziki, matematiki i tehniki, no. 1 (2011), pp. 57-61. http://geodesic.mathdoc.fr/item/PFMT_2011_1_a8/
[1] V. A. Kovaleva, A. N. Skiba, “Konechnye gruppy s obobschennym usloviem pokrytiya i izolirovaniya dlya podgrupp”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2009, no. 2 (53), 145–149 | MR
[2] V. A. Kovaleva, A. N. Skiba, “Kharakterizatsii konechnykh razreshimykh grupp po svoistvam obobschennogo pokrytiya i izolirovaniya dlya podgrupp”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2009, no. 3 (54), 200–206 | Zbl
[3] O. Ore, “Contributions in the theory of groups of finite order”, Duke Math. J., 1939, no. 5, 431–460 | DOI | MR
[4] S. E. Stonehewer, “Permutable subgroups in Infinite Groups”, Math. Z., 1972, no. 125, 1–16 | DOI | MR | Zbl
[5] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992 | MR
[6] Y. Wang, “Finite Groups with Some Subgroups of Sylow Subgroups $c$-Supplemented”, J. Algebra, 2000, no. 224, 464–478 | MR
[7] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978 | MR | Zbl
[8] H. Wielandt, Subnormal subgroups and permutation groups, Lectures given at the Ohio State University, Columbus, Ohio, 1971
[9] B. Huppert, Endliche Gruppen, v. I, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl
[10] J. Buckley, “Finite groups whose minimal subgroups are normal”, Math. Z., 1970, no. 15, 15–17 | DOI | MR | Zbl
[11] A. Ballester-Bolinches, X. Y. Guo, “On complemented subgroups of finite groups”, Arch. Math., 1999, no. 72, 161–166 | DOI | MR | Zbl