Methodology, methods and technology of computer object-oriented modelling of nonlinear systems of deformable solid bodies
Problemy fiziki, matematiki i tehniki, no. 1 (2011), pp. 89-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents one of the ways of decision of the problem of perfection of the resource-saving technology in industrial and civil construction. Materials of the original researches are considered on the basis of concepts of the system approach, modern computer technologies and the developed methods of decision of boundary problems of the nonlinear theory of elasticity.
Keywords: nonlinear systems, deformable solid bodies, methods, means and technology of optimization.
Mots-clés : construction
@article{PFMT_2011_1_a14,
     author = {V. E. Bykhautsau},
     title = {Methodology, methods and technology of computer object-oriented modelling of nonlinear systems of deformable solid bodies},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {89--99},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2011_1_a14/}
}
TY  - JOUR
AU  - V. E. Bykhautsau
TI  - Methodology, methods and technology of computer object-oriented modelling of nonlinear systems of deformable solid bodies
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2011
SP  - 89
EP  - 99
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2011_1_a14/
LA  - ru
ID  - PFMT_2011_1_a14
ER  - 
%0 Journal Article
%A V. E. Bykhautsau
%T Methodology, methods and technology of computer object-oriented modelling of nonlinear systems of deformable solid bodies
%J Problemy fiziki, matematiki i tehniki
%D 2011
%P 89-99
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2011_1_a14/
%G ru
%F PFMT_2011_1_a14
V. E. Bykhautsau. Methodology, methods and technology of computer object-oriented modelling of nonlinear systems of deformable solid bodies. Problemy fiziki, matematiki i tehniki, no. 1 (2011), pp. 89-99. http://geodesic.mathdoc.fr/item/PFMT_2011_1_a14/

[1] N. I. Bezukhov, Osnovy teorii uprugosti,plastichnosti i polzuchesti, Vyssh. shkola, M., 1968, 512 pp.

[2] V. E. Bykhovtsev, Kompyuternoe ob'ektno-orientirovannoe modelirovanie nelineinykh sistem deformiruemykh tverdykh tel, UO «GGU im. F. Skoriny», Gomel, 2007, 219 pp.

[3] V. E. Bykhovtsev, A. V. Bykhovtsev, K. S. Kurochka, “Vizualnoe ob'ektno-orientirovannoe modelirovanie zdanii s fundamentami na gruntovykh osnovaniyakh”, Prostranstvennye konstruktivnye sistemy zdanii i sooruzhenii, metody rascheta, konstruirovaniya i tekhnologiya vozvedeniya, Nauch.-tekhn. konf., v. 2, Strinko, Mn., 2002, 5–16

[4] O. Zenkevich, Metod konechnykh elementov v tekhnike, Mir, M., 1975, 540 pp.

[5] M. A. Zhuravkov, Matematicheskoe modelirovanie deformatsionnykh protsessov v tverdykh deformiruemykh sredakh, BGU, Mn., 2002, 456 pp.

[6] I. V. Maksimei, Matematicheskoe modelirovanie bolshikh sistem, Vyssh. shk., Mn., 1985, 119 pp.

[7] V. Z. Parton, P. I. Perlin, Metody matematicheskoi teorii uprugosti, Nauka, M., 1981, 688 pp. | MR

[8] E. I. Starovoitov, Osnovy teorii uprugosti, plastichnosti i vyazkouprugosti, BelGUT, Gomel, 2001, 344 pp.

[9] N. A. Tsytovich, Mekhanika gruntov, Stroiizdat, M., 1963, 542 pp.