Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2011_1_a0, author = {V. V. Andreev and A. F. Krutov}, title = {Electromagnetic form factors of mesons}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {7--19}, publisher = {mathdoc}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2011_1_a0/} }
V. V. Andreev; A. F. Krutov. Electromagnetic form factors of mesons. Problemy fiziki, matematiki i tehniki, no. 1 (2011), pp. 7-19. http://geodesic.mathdoc.fr/item/PFMT_2011_1_a0/
[1] J. Volmer et al., “New results for the charged pion electromagnetic form-factor”, Phys. Rev. Lett., 86 (2001), 1713–1716 | DOI
[2] C. F. Perdrisat, “Proton elastic form factor: The JLab data”, Eur. Phys. J. A, 17 (2003), 317–321 | DOI
[3] F. Gross, Relativistic quantum mechanics and field theory, John Wiley Sons Inc., N.Y., 1993, 629 pp. | MR
[4] P. A. M. Dirac, “Forms of relativistic dynamics”, Rev. of Modern Phys., 21 (1949), 392–399 | DOI | MR
[5] F. Cardarelli et al., “Charge form-factor of pi and $K$ mesons”, Phys. Rev. D, 53 (1996), 6682–6685 | DOI
[6] F. Cardarelli et al., “Electromagnetic form-factors of the rho meson in a light front constituent quark model”, Phys. Lett. B, 349 (1995), 393–399 | DOI
[7] F. Coester, W. N. Polyzou, “Charge form factors of quark-model pions”, Phys. Rev. C, 71 (2005), 028202 | DOI
[8] F. Coester, W. N. Polyzou, Charge form factors of quark-model pions, II, 2004, arXiv: (Date of access: 14.01.2008) nucl-th/0405082
[9] W. Jaus, “Relativistic constituent quark model of electroweak properties of light mesons”, Phys. Rev. D, 44 (1991), 2851–2859 | DOI
[10] F. Schlumpf, “Charge form-factors of pseudoscalar mesons”, Phys. Rev. D, 50 (1994), 6895–6898 | DOI
[11] A. F. Krutov, “Elektroslabye svoistva legkikh mezonov v relyativistskoi modeli sostavnykh kvarkov”, Yadernaya fizika, 60:8 (1997), 1442–1450
[12] A. F. Krutov, V. E. Troitsky, “Relativistic instant-form approach to the structure of two-body composite systems”, Phys. Rev. C, 2002, 045501 | DOI
[13] T. W. Allen, W. H. Klink, “Pion charge form factor in point form relativistic dynamics”, Phys. Rev. C, 58 (1998), 3670–3673 | DOI
[14] B. Desplanques, “Nucleon and pion form factors in different forms of relativistic quantum mechanics”, Int. J. Mod. Phys. A, 20 (2005), 1601–1606 | DOI
[15] B. Desplanques, L. Theussl, “Form factors in the ‘point form’ of relativistic quantum mechanics: Single and two-particle currents”, Eur. Phys. J. A, 21 (2004), 93 | DOI
[16] B. Desplanques, L. Theussl, S. Noguera, “Effective boost and ‘point-form’ approach”, Phys. Rev. C, 65 (2002), 038202 | DOI
[17] L. Theussl et al., “Comparison of different boost transformations for the calculation of form factors in relativistic quantum mechanics”, Few Body Syst. Suppl., 14 (2003), 393 | DOI
[18] B. Desplanques, “Dirac's inspired point form and hadron form factors”, Nucl. Phys. A, 755 (2005), 303–306 | DOI
[19] A. A. Logunov, A. N. Tavkhelidze, “Quasi-optical approach in quantum field theory”, Nuovo Cimento, 29:2 (1963), 380–399 | DOI | MR
[20] H. W. Crater, P. Van Alstine, “Two-body Dirac equations”, Annals Phys., 148 (1983), 57–94 | DOI | MR
[21] C. Savkli, F. Gross, “Quark-antiquark bound states in the relativistic spectator formalism”, Phys. Rev. C, 63 (2001), 035208 | DOI
[22] D. Ebert, R. N. Faustov, V. O. Galkin, “Masses and electroweak properties of light mesons in the relativistic quark model”, Eur. Phys. J. C, 47 (2006), 745–755 | DOI
[23] B. Desplanques, “Relativistic quantum mechanics: A Dirac's point-form inspired approach”, Nucl. Phys. A, 748 (2005), 139–167 | DOI
[24] B. D. Keister, “Heavy quark symmetry and Dirac's point form dynamics”, Phys. Rev. D, 46 (1992), 3188–3194 | DOI
[25] B. D. Keister, W. N. Polyzou, “Relativistic Hamiltonian dynamics in nuclear and particle physics”, Adv. Nucl. Phys., 20 (1991), 225–479
[26] W. H. Klink, “Constructing Point Form Mass Operators from Interaction Lagrangians”, Nucl. Phys. A, 716 (2003), 123–135 | DOI
[27] S. Godfrey, N. Isgur, “Mesons in a relativized quark model with chromodynamics”, Phys. Rev. D, 32 (1985), 189–231 | DOI | MR
[28] D. Gromes, Theoretical understanding of quark forces, Preprint Institute of Theoretical Physics HD-THEP-89-17, Heidelberg, 1989, 64 pp.
[29] S. M. Bilenkii, Vvedenie v diagrammy Feinmana i fiziku elektroslabogo vzaimodeistviya, Energoatomizdat, M., 1990, 327 pp.
[30] V. V. Andreev, “Opisanie leptonnykh raspadov v ramkakh puankare-kovariantnoi kvarkovoi modeli”, Vestsi NAH Belarusi. Ser.fiz.-mat. navuk, 2 (2000), 93–98
[31] V. V. Andreev, A. F. Krutov, “Komptonovskaya polyarizuemost kaonov v relyativistskoi gamiltonovoi dinamike”, Vestnik Samarskogo gos. un-ta. Estestvenno-nauchnaya seriya, 2004, Spets. vypusk, 111–127
[32] A. F. Krutov, V. E. Troitskii, “Postroenie formfaktorov sostavnykh sistem s pomoschyu obobschennoi teoremy Vignera–Ekkarta dlya gruppy Puankare”, Teoreticheskaya i matematicheskaya fizika, 143:2 (2005), 258–277 | DOI | MR
[33] D. Ebert, R. N. Faustov, V. O. Galkin, “Quark-antiquark potential with retardation and radiative contributions and the heavy quarkonium mass spectra”, Phys. Rev. D, 62 (2000), 034014 | DOI
[34] E. V. Balandina i dr., “Poluleptonnye raspady psevdoskalyarnykh mezonov v mgnovennoi forme relyativistskoi gamiltonovoi dinamiki”, Yadernaya fizika, 63:2 (2000), 301–311
[35] Y. S. Kalashnikova, A. V. Nefediev, Y. A. Simonov, “QCD string in light-light and heavy-light mesons”, Phys. Rev. D, 64 (2001), 014037 | DOI
[36] A. M. Badalian, D. S. Kuzmenko, “Freezing of QCD coupling alpha(s) affects the short distance static potential”, Phys. Rev. D, 65 (2002), 016004 | DOI
[37] G. Ganbold, “QCD running coupling in low-energy region”, Phys. Rev. D, 81:9, May (2010), 094008 | DOI
[38] C. Amsler et al., “The Review of Particle Physics”, Physics Letters B, 667 (2008), 1, 2009 partial update for the 2010 edition | DOI
[39] F. Cardarelli et al., “Hard constituent quarks and electroweak properties of pseudoscalar mesons”, Phys. Lett. B, 332 (1994), 1–7 | DOI
[40] P. L. Chung, F Coester, W. N. Polyzou, “Charge form-factors of quark model pions”, Phys. Lett. B, 205 (1988), 545–548 | DOI
[41] W. Jaus, “Semileptonic decays of B and D mesons in the light front formalism”, Phys. Rev. D, 41 (1990), 3394 | DOI
[42] S. Simula, “Comparison among Hamiltonian light-front formalisms at $q^+=0$ and $q^+\ne30$: Space-like elastic form factors of pseudoscalar and vector mesons”, Phys. Rev. C, 66 (2002), 035201 | DOI
[43] A. A. Cheshkov, Yu. M. Shirokov, “Invariantnaya parametrizatsiya lokalnykh operatorov”, ZhETF, 44:6 (1963), 1982–1992 | MR
[44] A. F. Krutov, V. E. Troitsky, “Relativistic properties of spin and pion electromagnetic structure”, J. High Energy Physics, 10 (1999), 028 | DOI
[45] A. Amghar, B. Desplanques, L. Theussl, “The form factor of the pion in ‘point-form’ of relativistic dynamics revisited”, Phys. Lett. B, 574 (2003), 201–209 | DOI
[46] V. G. Kadyshevskii, R. M. Mir-Kasimov, N. B. Skachkov, “Trekhmernaya formulirovka relyativistskoi problemy dvukh tel”, EChAYa, 2:3 (1972), 635–690
[47] A. A. Karmanov, “Relyativistskie sostavnye sistemy v dinamike na svetovom fronte”, EChAYa, 1988, 526–578
[48] L. A. Kondratyuk, D. V. Chekin, “Formfaktory perekhodov i veroyatnosti poleptonnykh raspadov B i D-mezonov v kovariantnoi dinamike na svetovom fronte”, Yadernaya fizika, 64:4 (2001), 786–812
[49] V. V. Andreev, A. V. Sosnovskii, “Tochechnaya forma relyativistskoi gamiltonovoi dinamiki i elektromagnitnyi radius piona”, Izvestiya GGU im. F. Skoriny, 2001, no. 5 (8), 8–12
[50] W. Lucha, H. Rupprecht, F. F. Schoberl, “Relativistic treatment of fermion anti-fermion bound states”, Phys. Rev. D, 44 (1991), 242–249 | DOI
[51] V. V. Andreev, “O vignerovskikh vrascheniyakh spinovykh bazisov v vektornoi parametrizatsii grupppy Lorentsa”, Vestsi AH BSSR. Ser. fiz.-mat. navuk, 1988, no. 3, 73–78
[52] A. Le Yaouanc et al., “Covariant quark model of form-factors in the heavy mass limit”, Phys. Lett. B, 365 (1996), 319–326 | DOI
[53] P. L. Chung, F. Coester, “Relativistic constituent quark model of nucleon form-factors”, Phys. Rev. D, 44 (1991), 229–241 | DOI
[54] A. F. Krutov, V. E. Troitsky, Relativistic instant-form approach to the structure of two-body composite systems. Nonzero spin, 2003, arXiv: (Date of access: 14.01.2008) hep-ph/0307217
[55] S. B. Gerasimov, Electromagnetic moments of hadrons and quarks in a hybrid model, Preprint JINR E2-89-837, JINR, Dubna, Russia, 1989, 19 pp.
[56] S. B. Gerasimov, “Magnetic moments of baryons and strange content of the nucleon”, Phys. Lett. B, 357 (1995), 666–670 | DOI
[57] V. V. Andreev, “Analiticheskoe vychislenie feinmanovskikh amplitud”, Yadernaya fizika, 66:2 (2003), 410–420
[58] V. V. Andreev, Metody vychisleniya amplitud v kvantovopolevykh teoriyakh i modelyakh, UO «Gomelskii gosudarstvennyi universitet im. F. Skoriny», Gomel, 2004, 235 pp.
[59] S. R. Amendolia et al., “A measurement of the space-like pion electromagnetic form-factor”, Nucl. Phys. B, 277 (1986), 168–216 | DOI
[60] S. R. Amendolia et al., “A measurement of the pion charge radius”, Phys. Lett. B, 146 (1984), 116–131 | DOI
[61] E. B. Dally et al., “Direct measurement of the negative kaon form-factor”, Phys. Rev. Lett., 45 (1980), 232–235 | DOI
[62] I. Eschrich et al., “Measurement of the Sigma-charge radius by Sigma-electron elastic scattering”, Phys. Lett. B, 522 (2001), 233–239 | DOI
[63] S. R. Amendolia et al., “A Measurement of the kaon charge radius”, Phys. Lett. B, 178 (1986), 435–454 | DOI
[64] A. F. Krutov, V. E. Troitsky, “On a possible estimation of the constituent-quark parameters from Jefferson Lab experiments on pion form factor”, Eur. Phys. J. C, 20 (2001), 71–76 | DOI
[65] C. J. Burden, C. D. Roberts, M. J. Thomson, “Electromagnetic Form Factors of Charged and Neutral Kaons”, Phys. Lett. B, 371 (1996), 163–168 | DOI
[66] W.-M. Yao et al., “Review of Particle Physics”, Journal of Physics G, 33 (2006), 1 | DOI
[67] P. Maris, P. C. Tandy, “The $\pi$, $K^+$, and $K^0$ electromagnetic form factors”, Phys. Rev. C, 62 (2000), 055204 | DOI
[68] P. Maris, P. C. Tandy, “Electromagnetic transition form factors of light mesons”, Phys. Rev. C, 65 (2002), 045211 | DOI
[69] C. D. Roberts, “Electromagnetic pion form-factor and neutral pion decay width”, Nucl. Phys. A, 605 (1996), 475–495 | DOI
[70] C. R. Munz et al., “Electromagnetic meson form-factors in the Salpeter model”, Phys. Rev. C, 52 (1995), 2110–2119 | DOI
[71] A. E. Dorokhov, A. E. Radzhabov, M. K. Volkov, “Pion radii in nonlocal chiral quark model”, Eur. Phys. J. A, 21 (2004), 155–159 | DOI
[72] A. Lai et al., “Investigation of $K_{(L,S)}\to \pi^+\pi^-e^+e^-$ decays”, Eur. Phys. J. C, 30 (2003), 33–49 | DOI
[73] T. Horn et al., “Determination of the Charged Pion Form Factor at $\mathcal{Q}^2=1.60$ and $2.45\mathrm{(GeV/c)}^2$”, Phys. Rev. Lett., 97 (2006), 192001 | DOI
[74] V. Tadevosyan et al., “Determination of the pion charge form factor for $\mathcal{Q}^2=0.60-1.60 \mathrm{GeV}^2$”, Phys. Rev. C, 75 (2007), 055205 | DOI
[75] C. J. Bebek et al., “Electroproduction of single pions at low epsilon and a measurement of the pion form-factor up to $\mathcal{Q}^2=10\mathrm{GeV}^2$”, Phys. Rev. D, 17 (1978), 1693–1712 | DOI
[76] J. F. Donoghue, E. S. Na, “Asymptotic limits and the structure of the pion form factor”, Phys. Rev. D, 56:11 (1997), 7073–7076 | DOI
[77] A. F. Krutov, V. E. Troitskii, “Mgnovennaya forma puankare-invariantnoi kvantovoi mekhaniki i opisanie struktury sostavnykh sistem”, EChAYa, 40:2 (2009), 268–318
[78] A. F. Krutov, V. E. Troitsky, N. A. Tsirova, “Nonperturbative relativistic approach to pion form factor versus JLab experiments”, Phys. Rev. C, 80 (2009), 055210 | DOI