Determinant representation of Pade joint approximations
Problemy fiziki, matematiki i tehniki, no. 4 (2010), pp. 46-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

Determinant formulas for numerators and denominators of joint approximations of Pade $\pi_j(z), j=1,2 \dots,r$ of perfect system of functions $\{f_j(z)\}^r_{j=1}$ are established. The analogue of the Pade theorem is proved and the obvious kind of the remainders is found at the approach $f_j(z)$ by the rational function $\pi_j(z)$ . The received theorems supplement and generalise the known results of Ermite, Pade, K. Mahler, E.M. Nikishin, A.I. Aptekarev and other authors.
Keywords: sedate a number, approximations of Pade, joint approximations of Pade, perfect system of functions, determinant representation.
@article{PFMT_2010_4_a7,
     author = {A. P. Starovoitov and N. V. Rjabchenko},
     title = {Determinant representation of {Pade} joint approximations},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {46--49},
     publisher = {mathdoc},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2010_4_a7/}
}
TY  - JOUR
AU  - A. P. Starovoitov
AU  - N. V. Rjabchenko
TI  - Determinant representation of Pade joint approximations
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2010
SP  - 46
EP  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2010_4_a7/
LA  - ru
ID  - PFMT_2010_4_a7
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%A N. V. Rjabchenko
%T Determinant representation of Pade joint approximations
%J Problemy fiziki, matematiki i tehniki
%D 2010
%P 46-49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2010_4_a7/
%G ru
%F PFMT_2010_4_a7
A. P. Starovoitov; N. V. Rjabchenko. Determinant representation of Pade joint approximations. Problemy fiziki, matematiki i tehniki, no. 4 (2010), pp. 46-49. http://geodesic.mathdoc.fr/item/PFMT_2010_4_a7/

[1] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, gl. red. fiz.-mat. lit., M., 1988 | MR | Zbl

[2] H. Pade, “Sur La representation approchee d`une function par des fractions rationelles”, Ann. Scient. Ecole norm. super. (3), 9 (1892), 1–93 | MR

[3] K. Mahler, “Perfect systems”, Compositio math., 19:2 (1968), 95–166 | MR | Zbl

[4] H. A. Jager, “Multidimensionel Generalization of the Pade Table”, K. Nederl. Ak. Wetenschappen, ser. A, 1964, no. 67, 192–249

[5] J. Coates, “On the algebraic approximation of functions”, K. Nederl. Ak. Wetenschappen, ser. A, 1966, no. 69, 421–461 | MR | Zbl

[6] F. Klein, Elementarnaya matematika s tochki zreniya vysshei, M.–L., 1933

[7] M. G. de Bruijn, Three new examples of generalized Pade tables, which are partly normal, Report 76-11, Depar. of Mathem. Univers. Amsterdam, 13 pp.

[8] V. N. Sorokin, “Skhodimost sovmestnykh approksimatsii Pade odnogo klassa funktsii”, Matem. sb., 132(174):3 (1987), 391–400 | MR

[9] E. M. Nikishin, “Sovmestnye approksimatsii Pade”, Matem. sb., 113 (155):4 (18) (1980), 499–519 | MR | Zbl

[10] A. I. Aptekarev, “O skhodimosti ratsionalnykh approksimatsii k naboru eksponent”, Vestnik MGU. Seriya 1. Matematika. Mekhanika, 1981, no. 1, 68–74 | MR | Zbl

[11] A. I. Aptekarev, “Ob approksimatsiyakh Pade k naboru $\{_1F_1(1,c;\lambda_iz)\}_{i=1}^k$”, Vestnik MGU. Seriya 1. Matematika. Mekhanika, 1981, no. 2, 58–62 | MR | Zbl

[12] Dzh. Beiker, P. Greivs-Morris, Approksimatsii Pade, Mir, M., 1986 | MR