A note on $\mathfrak{X}$-local formations
Problemy fiziki, matematiki i tehniki, no. 4 (2010), pp. 61-62
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that every $\mathfrak{X}$-local (by F$\ddot{o}$rster) formation of finite groups is an $\omega$-composition formation, where $\omega = \pi (\mathfrak{X})$.
Keywords:
finite group
Mots-clés : formation.
Mots-clés : formation.
@article{PFMT_2010_4_a10,
author = {L. A. Shemetkov},
title = {A note on $\mathfrak{X}$-local formations},
journal = {Problemy fiziki, matematiki i tehniki},
pages = {61--62},
year = {2010},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PFMT_2010_4_a10/}
}
L. A. Shemetkov. A note on $\mathfrak{X}$-local formations. Problemy fiziki, matematiki i tehniki, no. 4 (2010), pp. 61-62. http://geodesic.mathdoc.fr/item/PFMT_2010_4_a10/
[1] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992 | MR
[2] P. Förster, “Projektive Klassen endlicher Gruppen. IIa: Gesättigte Formationen: Ein allgemeiner Satz von Gaschütz–Lubeseder–Baer–Typ”, Publ. Sec. Mat. Univ. Autònoma Barcelona, 29:2–3 (1985), 39–76 | MR
[3] A. Ballester-Bolinches, L. M. Ezquerro, Classes of finite groups, Springer, Dordrecht, 2006 | MR
[4] A. Ballester-Bolinches, C. Calvo, L. A. Shemetkov, “On partially saturated formations of finite groups”, Sbornik Mathematics, 198:6 (2007), 757–775 | DOI | MR | Zbl
[5] L. A. Shemetkov, A. N. Skiba, “Multiply $\mathfrak{L}$-composition formations of finite groups”, Ukrainian Math. J., 52:6 (2000), 898–912 | DOI | MR