Identification of the influence of resonances on the cross section using Fredholm integral equation
Problemy fiziki, matematiki i tehniki, no. 4 (2010), pp. 10-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

Method for resonance finding, based on the Fredholm integral equation, and analysis of their influence on cross section are presented. This method is applied for several model potentials. Examples of the resonance behaviour of the cross sections of various types are presented. The results of the calculations are compared with the results obtained using other methods.
Keywords: Fredholm equation, resonance energy, resonance wave function, complex scaling, cross section.
Mots-clés : $S$-matrix
@article{PFMT_2010_4_a1,
     author = {V. N. Kapshai and K. P. Shilyaeva},
     title = {Identification of the influence of resonances on the cross section using {Fredholm} integral equation},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {10--17},
     publisher = {mathdoc},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2010_4_a1/}
}
TY  - JOUR
AU  - V. N. Kapshai
AU  - K. P. Shilyaeva
TI  - Identification of the influence of resonances on the cross section using Fredholm integral equation
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2010
SP  - 10
EP  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2010_4_a1/
LA  - ru
ID  - PFMT_2010_4_a1
ER  - 
%0 Journal Article
%A V. N. Kapshai
%A K. P. Shilyaeva
%T Identification of the influence of resonances on the cross section using Fredholm integral equation
%J Problemy fiziki, matematiki i tehniki
%D 2010
%P 10-17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2010_4_a1/
%G ru
%F PFMT_2010_4_a1
V. N. Kapshai; K. P. Shilyaeva. Identification of the influence of resonances on the cross section using Fredholm integral equation. Problemy fiziki, matematiki i tehniki, no. 4 (2010), pp. 10-17. http://geodesic.mathdoc.fr/item/PFMT_2010_4_a1/

[1] R. J. Taylor, Scattering theory, John Wiley Sons, New York–London–Sydney–Toronto, 1972, 570 pp.

[2] R. Nyuton, Teoriya rasseyaniya voln i chastits, Mir, M., 1969, 607 pp.

[3] G. Gamow, “Zur Quantentheorie des Atomkernes”, Z. Phys., 51 (1928), 201–212

[4] A. J. F. Siegert, “On the derivation of the dispersion formula for nuclear reactions”, Phys. Rev., 56 (1939), 750–752 | DOI

[5] V. I. Kukulin, V. N. Krasnopolsky, J. Horacek, Theory of resonances: principles and applications, Academia, Prague, 1989, 360 pp. | MR | Zbl

[6] E. Brandas, N. Elander (eds.), Resonances The Unifying Route Towards the Formulation of Dynamical Processes Foundations and Applications in Nuclear, Atomic and Molecular Physics, Lecture Notes in Physics, 325, Springer Verlag, New York, 1989, 564 pp. | DOI | MR

[7] S. A. Sofianos, S. A. Rakityansky, “Exact method for locating potential resonances and Regge trajectories”, Journal of Physics A, 30 (1997), 3725–3737 | DOI | MR | Zbl

[8] S. A. Rakityansky, S. A. Sofianos, “Jost function for coupled partial waves”, Journal of Physics A, 31 (1998), 5149–5175 | DOI | Zbl

[9] O. I. Tolstikhin, V. N. Ostrovsky, H. Nakamura, “Siegert pseudostate formulation of scattering theory: One-channel case”, Phys. Rev. A, 58 (1998), 2077–2096 | DOI

[10] K. Shilyaeva, N. Elander, E. Yarevsky, “Role of Resonances in Building Cross Sections: Comparison Between the Mittag–Leffler and the T-matrix Green Function Expansion Approaches”, Int. J. Quantum Chem., 107 (2007), 1301–1305 | DOI

[11] K. Shilyaeva, N. Elander, E. Yarevsky, “The role of resonances in building cross sections: The Mittag–Leffler expansion in a two-channel scattering”, Int. J. Quantum Chem., 109 (2009), 414–424 | DOI

[12] K. Shilyaeva, E. Yarevsky, N. Elander, “Identifying resonance structures in a scattering cross section using the $\mathrm{N^{3+}+H}\to\mathrm{NH^{3+}}\to\mathrm{N^{2+}+H^+}$ reaction as an example”, Journal of Physics B, 42 (2009), 044011 | DOI

[13] V. Kapshai, T. Alferova, N. Elander, “Integral equations and complex resonance energies for analytical potentials”, Int. J. Quantum Chem., 107 (2007), 1029–1039 | DOI

[14] V. Kapshai, K. Shilyaeva, N. Elander, “Integral equations for the Jost solutions and decaying resonance states”, Izvestiya Gomelskogo gosudarstvennogo universiteta imeni F. Skoriny, 2006, no. 6 (39), 3–8

[15] A. A. Logunov, A. N. Tavkhelidze, “Quasi-optical approach in quantum field theory”, Nuovo Cimento, 29 (1963), 380–399 | DOI | MR

[16] V. G. Kadyshevskii, R. M. Mir-Kasimov, N. B. Skachkov, “Trekhmernaya formulirovka relyativistskoi problemy dvukh tel”, EChAYa, 2 (1972), 635–690

[17] V. Kapshai, K. Shilyaeva, N. Elander, “Integral equations for different wave functions and their use for resonance finding”, Journal of Physics B, 42 (2009), 044001 | DOI

[18] J. Nuttal, H. L. Cohen, “Method of Complex Coordinates for Three-Body Calculations above the Breakup Threshold”, Phys. Rev., 188 (1969), 1542–1544 | DOI

[19] E. Balslev, J. M. Combes, “Spectral properties of many body Schrödinger operators with dilation-analytic interactions”, Commun. Math. Phys., 22 (1971), 280–294 | DOI | MR | Zbl

[20] W. H. Press et al., Numerical Recipes in Fortran 77: The Art of Scientific Computing, 2nd ed., Cambridge University Press, 2001, 920 pp. | MR

[21] A. Abrashkevich, I. V. Puzynin, “CANM, a program for numerical solution of a system of nonlinear equations using the continuous analog of Newton's method”, Comput. Phys. Commun., 156 (2004), 154–170 | DOI | Zbl

[22] E. Anderson et al., LAPACK Users Guide, 3d ed., SIAM, Philadelphia, PA, 1999, 407 pp.