$S$-$C$-permutably embedded subgroups of finite groups
Problemy fiziki, matematiki i tehniki, no. 3 (2010), pp. 41-48

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $H$ of a finite group $G$ is said to be $s$-conditionally permutably embedded (or in brevity, $s$-$c$-permutably embedded) in $G$ if for each $p \in \pi(H)$ every Sylow $p$-subgroup of $H$ is a Sylow $p$-subgroup of some $s$-conditionally permutable subgroup of $G$. In this paper, we use some $s$-$c$-permutably embedded subgroups to study the structure of some groups. Some known results are generalized.
Keywords: finite group, $s$-conditionally permutably embedded subgroup, Sylow subgroup, maximal subgroup.
Mots-clés : formation
@article{PFMT_2010_3_a5,
     author = {Jianhong Huang and Fengyan Xie and Xiaolan Yi},
     title = {$S$-$C$-permutably embedded subgroups of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {41--48},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2010_3_a5/}
}
TY  - JOUR
AU  - Jianhong Huang
AU  - Fengyan Xie
AU  - Xiaolan Yi
TI  - $S$-$C$-permutably embedded subgroups of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2010
SP  - 41
EP  - 48
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2010_3_a5/
LA  - ru
ID  - PFMT_2010_3_a5
ER  - 
%0 Journal Article
%A Jianhong Huang
%A Fengyan Xie
%A Xiaolan Yi
%T $S$-$C$-permutably embedded subgroups of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2010
%P 41-48
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2010_3_a5/
%G ru
%F PFMT_2010_3_a5
Jianhong Huang; Fengyan Xie; Xiaolan Yi. $S$-$C$-permutably embedded subgroups of finite groups. Problemy fiziki, matematiki i tehniki, no. 3 (2010), pp. 41-48. http://geodesic.mathdoc.fr/item/PFMT_2010_3_a5/