Solution of the classical regulation problem by optimal controls of linear-quadratic problems
Problemy fiziki, matematiki i tehniki, no. 2 (2010), pp. 40-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

The basic problem of the classical regulation theory in the bounded control class is considered. Optimal control methods are used to construct the regulator work algorithm. These methods perform feedback implementation in the real-time mode. The feedback transfers the system from one equilibrium condition vicinity into another one with high transient quality. It stabilizes the system according to the new equilibrium condition. To solve the problem the feedback optimal control realization of linear-quadratic problem with restrictions is suggested. The results are illustrated with the example of the linear dynamical system regulation of the fourth order.
Keywords: dynamic system, regulation problem, bounded stabilizing feedback, auxiliary optimal control problem, regulator.
@article{PFMT_2010_2_a5,
     author = {A. V. Lubochkin},
     title = {Solution of the classical regulation problem by optimal controls of linear-quadratic problems},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {40--46},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2010_2_a5/}
}
TY  - JOUR
AU  - A. V. Lubochkin
TI  - Solution of the classical regulation problem by optimal controls of linear-quadratic problems
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2010
SP  - 40
EP  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2010_2_a5/
LA  - ru
ID  - PFMT_2010_2_a5
ER  - 
%0 Journal Article
%A A. V. Lubochkin
%T Solution of the classical regulation problem by optimal controls of linear-quadratic problems
%J Problemy fiziki, matematiki i tehniki
%D 2010
%P 40-46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2010_2_a5/
%G ru
%F PFMT_2010_2_a5
A. V. Lubochkin. Solution of the classical regulation problem by optimal controls of linear-quadratic problems. Problemy fiziki, matematiki i tehniki, no. 2 (2010), pp. 40-46. http://geodesic.mathdoc.fr/item/PFMT_2010_2_a5/

[1] M. A. Aizerman, Lektsii po teorii avtomaticheskogo regulirovaniya, Fizmatgiz, M., 1958 | MR

[2] N. N. Krasovskii, “Problemy stabilizatsii upravlyaemykh dvizhenii”: I. G. Malkin, Teoriya ustoichivosti dvizheniya, Nauka, M., 1966, 475–514 | MR

[3] R. Gabasov, F. M. Kirillova, O. I. Kostyukova, “Optimizatsiya lineinoi sistemy upravleniya v rezhime realnogo vremeni”, Izvestiya RAN. Tekhnicheskaya kibernetika, 1992, no. 4, 3–19 | MR | Zbl

[4] R. Gabasov, A. V. Lubochkin, “Sintez regulyatora dlya odnoi lineino-kvadratichnoi zadachi optimalnogo upravleniya”, Avtomatika i telemekhanika, 1997, no. 9, 3–14 | MR | Zbl

[5] F. M. Kirillova, A. V. Lubochkin, “Sintez optimalnogo upravleniya v lineino-kvadratichnoi zadache s ogranicheniyami”, Doklady RAN, 356:6 (1997), 736–739 | MR | Zbl

[6] A. V. Lubochkin, “Diskretnaya realizatsiya pozitsionnogo resheniya v lineino-kvadratichnoi zadache s ogranicheniyami”, Izvestiya GGU im. F. Skoriny, 2003, no. 3 (18), 32–37

[7] R. Gabasov, F. M. Kirillova, O. I. Kostyukova, “K metodam stabilizatsii dinamicheskikh sistem”, Izvestiya RAN. Tekhnicheskaya kibernetika, 1994, no. 3, 67–77 | MR | Zbl

[8] R. Gabasov, A. V. Lubochkin, “Stabilizatsiya lineinykh dinamicheskikh sistem optimalnymi upravleniyami lineino-kvadratichnykh zadach”, Prikladnaya matematika i mekhanika, 62:4 (1998), 556–565 | MR

[9] A. V. Lubochkin, “Stabilizatsiya lineinykh dinamicheskikh sistem s pomoschyu pozitsionnykh reshenii lineino-kvadratichnykh zadach s ogranicheniyami”, Izvestiya GGU im. F. Skoriny, 2006, no. 4 (37), 39–42

[10] R. Gabasov, F. M. Kirillova, E. A. Ruzhitskaya, “Reshenie klassicheskoi zadachi regulirovaniya metodami optimalnogo upravleniya”, Avtomatika i telemekhanika, 2001, no. 6, 18–29 | MR | Zbl

[11] A. V. Lubochkin, “Postroenie optimalnogo (po srednekvadratichnoi intensivnosti upravleniya) perekhodnogo protsessa v lineinoi sisteme)”: R. Gabasov i dr., Konstruktivnye metody optimizatsii, v. 4, Vypuklye zadachi, Universitetskoe, Mn., 1987, 218–222 | MR

[12] V. M. Raketskii, “Reshenie obschei zadachi vypuklogo kvadratichnogo programmirovaniya dvoistvennym metodom”, Programmnoe obespechenie EVM, 55, In-t matematiki AN BSSR, Mn., 1985, 124–129