New characterizations of finite soluble groups
Problemy fiziki, matematiki i tehniki, no. 2 (2010), pp. 28-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $H$ of a group $G$ is called modular in $G$ if $H$ is a modular element (in sense of Kurosh) of the lattice $L(G)$ of all subgroups of $G$. The subgroup of $H$ generated by all modular subgroups of $G$ contained in $H$ is called the modular core of $H$ and denoted by $H_{mG}$. In the paper, we introduce the following concepts. A subgroup $H$ of a group $G$ is called $m$-supplemented ($m$-subnormal) in $G$ if there exists a subgroup (a subnormal subgroup respectively) $K$ of $G$ such that $G = HK$ and $H \cap K \le H_{mG}$. We proved the following theorems. Theorem A. A group $G$ is soluble if and only if each Sylow subgroup of $G$ is $m$-supplemented in $G$. Theorem B. A group $G$ is soluble if and only if every its maximal subgroup is $m$-subnormal in $G$.
Keywords: finite group, subnormal subgroup, modular subgroup, modular core, $m$-supplemented subgroup, $m$-subnormal subgroup.
Mots-clés : soluble group
@article{PFMT_2010_2_a3,
     author = {V. A. Vasilyev and A. N. Skiba},
     title = {New characterizations of finite soluble groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {28--33},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2010_2_a3/}
}
TY  - JOUR
AU  - V. A. Vasilyev
AU  - A. N. Skiba
TI  - New characterizations of finite soluble groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2010
SP  - 28
EP  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2010_2_a3/
LA  - ru
ID  - PFMT_2010_2_a3
ER  - 
%0 Journal Article
%A V. A. Vasilyev
%A A. N. Skiba
%T New characterizations of finite soluble groups
%J Problemy fiziki, matematiki i tehniki
%D 2010
%P 28-33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2010_2_a3/
%G ru
%F PFMT_2010_2_a3
V. A. Vasilyev; A. N. Skiba. New characterizations of finite soluble groups. Problemy fiziki, matematiki i tehniki, no. 2 (2010), pp. 28-33. http://geodesic.mathdoc.fr/item/PFMT_2010_2_a3/

[1] R. Schmidt, “Modulare Untergruppen endlicher Gruppen”, J. Ill. Math., 13 (1969), 358–377 | MR | Zbl

[2] R. Schmidt, Subgroup Lattices of Groups, Walter de Gruyter, Berlin–New York, 1994, 572 pp. | MR | Zbl

[3] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992, 891 pp. | MR

[4] B. Huppert, Endliche Gruppen, v. I, Springer, Berlin–Heidelberg–New York, 1967, 793 pp. | MR | Zbl

[5] Y. Wang, “$c$-normality of groups and its properties”, J. Algebra, 180 (1996), 954–965 | DOI | MR | Zbl

[6] A. Ballester-Bolinches, X. Y. Guo, “On complemented subgroups of finite groups”, Arch. Math., 72 (1999), 161–166 | DOI | MR | Zbl

[7] A. Ballester-Bolinches, Y. Wang, X. Y. Guo, “$c$-supplemented subgroups of finite groups”, Glasgow Math. J., 42 (2000), 383–389 | DOI | MR | Zbl

[8] Y. Wang, “Finite groups with some subgroups of Sylow subgroups $c$-supplemented”, J. Algebra, 224 (2000), 467–478 | DOI | MR | Zbl

[9] J. Jaraden, “Some conditions for solubility”, Math. J. Okayama Univ., 42 (2000), 1–5 | MR | Zbl

[10] L. Zhu, W. Guo, K. P. Shum, “Weakly $c$-normal subgroups of finite groups and their properties”, Comm. Algebra, 30:11 (2002), 5503–5510 | DOI | MR