Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2010_2_a3, author = {V. A. Vasilyev and A. N. Skiba}, title = {New characterizations of finite soluble groups}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {28--33}, publisher = {mathdoc}, number = {2}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2010_2_a3/} }
V. A. Vasilyev; A. N. Skiba. New characterizations of finite soluble groups. Problemy fiziki, matematiki i tehniki, no. 2 (2010), pp. 28-33. http://geodesic.mathdoc.fr/item/PFMT_2010_2_a3/
[1] R. Schmidt, “Modulare Untergruppen endlicher Gruppen”, J. Ill. Math., 13 (1969), 358–377 | MR | Zbl
[2] R. Schmidt, Subgroup Lattices of Groups, Walter de Gruyter, Berlin–New York, 1994, 572 pp. | MR | Zbl
[3] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992, 891 pp. | MR
[4] B. Huppert, Endliche Gruppen, v. I, Springer, Berlin–Heidelberg–New York, 1967, 793 pp. | MR | Zbl
[5] Y. Wang, “$c$-normality of groups and its properties”, J. Algebra, 180 (1996), 954–965 | DOI | MR | Zbl
[6] A. Ballester-Bolinches, X. Y. Guo, “On complemented subgroups of finite groups”, Arch. Math., 72 (1999), 161–166 | DOI | MR | Zbl
[7] A. Ballester-Bolinches, Y. Wang, X. Y. Guo, “$c$-supplemented subgroups of finite groups”, Glasgow Math. J., 42 (2000), 383–389 | DOI | MR | Zbl
[8] Y. Wang, “Finite groups with some subgroups of Sylow subgroups $c$-supplemented”, J. Algebra, 224 (2000), 467–478 | DOI | MR | Zbl
[9] J. Jaraden, “Some conditions for solubility”, Math. J. Okayama Univ., 42 (2000), 1–5 | MR | Zbl
[10] L. Zhu, W. Guo, K. P. Shum, “Weakly $c$-normal subgroups of finite groups and their properties”, Comm. Algebra, 30:11 (2002), 5503–5510 | DOI | MR