On finite groups similar to supersoluble groups
Problemy fiziki, matematiki i tehniki, no. 2 (2010), pp. 21-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $H$ of $G$ is called $\mathbf{P}$-subnormal in $G$ if either $H = G$ or there is a chain $H = H_0 \subset H_1 \subset \dots \subset H_{n-1} \subset H_n = G$ such that $|H_{i+1} : H_i |$ is a prime number for every $i = 0, 1, \dots , n-1$. For the set of $\pi$ primes the properties of $\mathrm w_\pi$-supersoluble groups $G$, i.e. groups for which for every $p \in \pi$ Sylow $p$-subgroup is $\mathbf{P}$-subnormal in $G$ are investigated. It is proved that the class of all $\mathrm w_\pi$-supersoluble groups is a normally hereditary formation, and the class of all soluble $\mathrm w_\pi$-supersoluble groups is a hereditary saturated formation. The properties of the groups, which are the product of $\mathbf{P}$-subnormal subgroups are obtained.
Keywords: finite group, $\mathbf{P}$-subnormal subgroup, $\mathrm w_\pi$-supersoluble group, $\pi$-saturated formation.
Mots-clés : formation
@article{PFMT_2010_2_a2,
     author = {A. F. Vasil'ev and T. I. Vasilyeva and V. N. Tyutyanov},
     title = {On finite groups similar to supersoluble groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {21--27},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2010_2_a2/}
}
TY  - JOUR
AU  - A. F. Vasil'ev
AU  - T. I. Vasilyeva
AU  - V. N. Tyutyanov
TI  - On finite groups similar to supersoluble groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2010
SP  - 21
EP  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2010_2_a2/
LA  - ru
ID  - PFMT_2010_2_a2
ER  - 
%0 Journal Article
%A A. F. Vasil'ev
%A T. I. Vasilyeva
%A V. N. Tyutyanov
%T On finite groups similar to supersoluble groups
%J Problemy fiziki, matematiki i tehniki
%D 2010
%P 21-27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2010_2_a2/
%G ru
%F PFMT_2010_2_a2
A. F. Vasil'ev; T. I. Vasilyeva; V. N. Tyutyanov. On finite groups similar to supersoluble groups. Problemy fiziki, matematiki i tehniki, no. 2 (2010), pp. 21-27. http://geodesic.mathdoc.fr/item/PFMT_2010_2_a2/

[1] B. Huppert, Endliche Gruppen, v. I, Springer, Berlin, 1967, 795 pp. | MR | Zbl

[2] A. F. Vasilev, T. I. Vasileva, V. N. Tyutyanov, O rasshirenno sverkhrazreshimykh konechnykh gruppakh, Preprint No 9, GGU im. F. Skoriny, Gomel, 2009, 20 pp.

[3] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp. | MR | Zbl

[4] A. Ballester-Bolinches, L. M. Ezquerro, Classes of Finite Groups, Springer, 2006, 385 pp. | MR

[5] L. S. Kazarin, “O gruppakh s faktorizatsiei”, DAN SSSR, 256:1 (1981), 26–29 | MR | Zbl

[6] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992, 891 pp. | MR

[7] A. F. Vasilev, “Novye svoistva konechnykh dinilpotentnykh grupp”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2004, no. 2, 39–43

[8] A. N. Skiba, L. A. Shemetkov, “Kratno $\omega$-lokalnye formatsii i klassy Fittinga konechnykh grupp”, Matem. trudy, 2:2 (1999), 114–147 | MR | Zbl

[9] J. H. Conway et al., Atlas of finite groups, Oxford, 1985, 252 pp. | MR

[10] D. Gorenstein, Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, M., 1985, 352 pp. | MR | Zbl

[11] H. G. Bray et al., Between Nilpotent and Solvable, ed. M. Weinstein, Polugonal Publishing House, Passaic, 1982, 240 pp. | MR | Zbl

[12] M. Assad, A. Shaalan, “On the supersolubility of finite groups”, Arch. Math., 53:4 (1989), 318–326 | DOI | MR

[13] M. J. Alejandre et al., “On some permutable products of supersoluble groups”, Rev. Mat. Iberoamericana, 20 (2004), 413–425 | DOI | MR | Zbl

[14] R. Baer, “Classes of finite groups and their properties”, Illinois J. Math., 1 (1957), 318–326 | MR

[15] A. F. Vasilev, T. I. Vasileva, “O konechnykh gruppakh, u kotorykh glavnye faktory yavlyayutsya prostymi gruppami”, Izvestiya VUZov. Matematika, 1997, no. 11 (426), 10–14