Spectral problem of the Klein-Gordon-Fock equation
Problemy fiziki, matematiki i tehniki, no. 2 (2010), pp. 7-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

The eigenvalues and eigenfunctions of the relativistic bound system based on Klein-Gordon-Fock equation with a mixed, scalar-vector coupling are determined.
Keywords: relativistic bound system, eigenvalues and eigenfunctions.
@article{PFMT_2010_2_a0,
     author = {N. V. Maksimenko and S. M. Kuchin},
     title = {Spectral problem of the {Klein-Gordon-Fock} equation},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {7--9},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2010_2_a0/}
}
TY  - JOUR
AU  - N. V. Maksimenko
AU  - S. M. Kuchin
TI  - Spectral problem of the Klein-Gordon-Fock equation
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2010
SP  - 7
EP  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2010_2_a0/
LA  - ru
ID  - PFMT_2010_2_a0
ER  - 
%0 Journal Article
%A N. V. Maksimenko
%A S. M. Kuchin
%T Spectral problem of the Klein-Gordon-Fock equation
%J Problemy fiziki, matematiki i tehniki
%D 2010
%P 7-9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2010_2_a0/
%G ru
%F PFMT_2010_2_a0
N. V. Maksimenko; S. M. Kuchin. Spectral problem of the Klein-Gordon-Fock equation. Problemy fiziki, matematiki i tehniki, no. 2 (2010), pp. 7-9. http://geodesic.mathdoc.fr/item/PFMT_2010_2_a0/

[1] A. A. Bykov, I. M. Dremin, A. V. Leonidov, “Potentsialnye modeli kvarkoniya”, Uspekhi fizicheskikh nauk, 143:1 (1984), 3–31 | DOI

[2] I. M. Dremin, A. V. Leonidov, “Uravneniya dvizheniya chastits s peremennoi massoi i uderzhanie kvarkov”, Pisma v zhurnal eksperimentalnoi i teoreticheskoi fiziki, 37:12 (1983), 617–619

[3] O. Mustafa, R. Sever, “Shifted $1/N$ expansion for the Klein–Gordon equation with vector and scalar potentials”, Phys. Rev. A, 44 (1991), 4142–4144 | DOI | MR

[4] E. Papp, “Closed $1/N$ mass formulae for relativistic two-body $Q_1$ anti-$Q_2$ systems”, Phys. Lett. B, 259 (1991), 19–23 | DOI | MR

[5] S. Stepanov, R. Tutik, “A new approach to the $1/N$-expansion for the Dirac equation”, Phys. Lett. A, 163 (1992), 26–31 | DOI

[6] T. Barakat, M. Odeh, O. Mustafa, “Perturbed Coulomb potentials in the Klein–Gordon equation via the shifted-1 expansion technique”, Journal of Physics A: Mathematical and General, 31:15 (1998), 3469–3479 | DOI | Zbl

[7] Shi-Hai Dong, Zhong-Qi Ma, “Exact solutions to the Schrödinger equation for the potential $V(r)=ar^2+br^{-4}+cr^{-6}$ in two dimensions”, J. Phys. A: Math. Gen., 31 (1998), 9855 | DOI | MR

[8] V. D. Mur et al., “Description of relativistic heavy-light quark-antiquark systems via Dirac equation”, Zhurnal eksperimentalnoi i teoreticheskoi fiziki, 105:1 (1994), 3–28

[9] Yu. A. Simonov, “Theory of light quarks in the confining vacuum”, Yadernaya fizika, 60:12 (1997), 2252–2276

[10] Yu. A. Simonov, “Spectrum and regge-trajectories in QCD”, Yadernaya fizika, 66 (2003), 2088–2094

[11] Yu. A. Simonov, “Konfainment”, Uspekhi fizicheskikh nauk, 166:4 (1996), 337–361 | DOI | MR

[12] D. S. Kuzmenko, Yu. A. Simonov, V. I. Shevchenko, “Vakuum, konfainment i struktury KKhD v metode vakuumnykh korrelyatorov”, Uspekhi fizicheskikh nauk, 174:1 (2004), 3–18 | DOI | MR

[13] V. G. Bornyakov i dr., “Nevyletanie tsveta i struktura adronov v reshetochnoi khromodinamike”, Uspekhi fizicheskikh nauk, 174:1 (2004), 19–38 | DOI